
Lecture 24

Last modified: Mon Nov 21 17:42:10 2011 CS164: Lecture #24 1

Storage Management

• Java has no means to free dynamic storage.

• However, when no expression in any thread can possibly be influ-
enced by or change an object, it might as well not exist:

IntList wasteful ()

{

IntList c = new IntList (3, new IntList (4, null));

return c.tail;

// variable c now deallocated, so no way

// to get to first cell of list

}

• At this point, Java runtime, like Scheme’s, recycles the object c

pointed to: garbage collection.

Last modified: Mon Nov 21 17:42:10 2011 CS164: Lecture #24 2

Garbage Collection: Reference Counting

• Idea: Keep count of number of pointers to each object.

X: 1 1 1

1 A 1 B 1 C

Y:

X: 1 2 1

1 A 1 B 1 C

Y:

Y = X.tail;

X: 0 3 1

1 A 1 B 1 C

Y:

X = Y;

X: 2 1

0 A 1 B 1 C etc.

Y:

Last modified: Mon Nov 21 17:42:10 2011 CS164: Lecture #24 3

Garbage Collection: Mark and Sweep

Roots

5 E B G

D

7

C

42

A

F

42

A

D

B*

F

C

A

D*

7 G D

E* F

C

G*

B

• Start at roots (named variables, static and on stack)

• Perform graph traversal to find and mark all reachable storage.

• Sweep over memory, adding all unmarked storage to free list.

Last modified: Mon Nov 21 17:42:10 2011 CS164: Lecture #24 4



Copying Garbage Collection

• Copy (and move) only reachable (useful) storage from ‘from’ space
to ‘to’ space.

• The ‘from’ and ‘to’ areas are called semispaces. Need twice the vir-
tual memory you actually use.

• As you copy, mark ‘from’ storage as moved, and leave behind a for-
warding pointer that tells how to translate other references to the
old storage.

• At end of algorithm, ‘from’ and ‘to’ swap roles, and the old ‘from’
area is freed en masse.

• Copied storage is compacted (gaps squeezed out) with possible ad-
vantages for memory access.

Last modified: Mon Nov 21 17:42:10 2011 CS164: Lecture #24 5

Copying Garbage Collection, Illustrated

Roots

B’

5

E’

from: 42

A B

G F

C

A

D

7 G

E F

C

G

B

to: D’

B’

G’ D’

E’ D’

7 G’

G’

B’

Roots

5 E B G

D

7

C

42

A

F

E’ B’ G’

D’

7

Last modified: Mon Nov 21 17:42:10 2011 CS164: Lecture #24 6

Roots and Other Pointers

• Above methods require that we know locations of roots and of pointer
fields in objects.

• Positions of some roots change during execution.

• Compiler keeps tables mapping PC to where roots are.

• Runtime type information (virtual tables) keep information of where
pointer fields are.

• Implementation must guarantee that fields are initialized.

Last modified: Mon Nov 21 17:42:10 2011 CS164: Lecture #24 7

Conservative Garbage Collection

• With C, you have none of the needed information.

• But easy to know the addresses of allocated storage, and sizes of
allocated objects (allocator keeps them around).

• So, guess that any word that looks like an address of allocated stor-
age is a valid address.

• Do mark-and-sweep on this assumption (look at whole stack and static
storage for roots).

• Marks some garbage, but can be surprisingly effective.

Last modified: Mon Nov 21 17:42:10 2011 CS164: Lecture #24 8



Generational Garbage Collection

• Heap storage tends to “die young.”

• So divide memory into young and old storage, and do copying only on
young storage.

• Must add old storage that points to young storage to roots.

• When young storage survives a GC (or two), move it to old storage.

• Every now and then, stop the world and do a full garbage collection.

• This technique significantly speeds up GC.

Last modified: Mon Nov 21 17:42:10 2011 CS164: Lecture #24 9

Region-Based Allocation

• Garbage collection (all forms) does incur overheads, which can be
unpredictable,

• While manual freeing is prone to error and inconvenient.

• One compromise is region-based allocation.

• Idea:

– Create a data structure known as a region (or zone, or arena, or
various other names).

– Provides two operations: allocate object, and free all objects.

• Thus, to perform calculation that creates lots of temporary heap
objects,

– Create region (a local variable).

– Allocate all the temporary storage in this region.

– Delete whole region at end.

Last modified: Mon Nov 21 17:42:10 2011 CS164: Lecture #24 10

Region Implementation

• Simple implementation: allocate storage in big blocks, and allocate
objects sequentially in the blocks.

• Freeing all blocks frees all the objects quickly.

aRegion:

x = aRegion.alloc (40);

y = aRegion.alloc (100);

z = aRegion.alloc (120);

v = aRegion.alloc (100);


	Lecture 24
	Storage Management
	Garbage Collection: Reference Counting
	Garbage Collection: Mark and Sweep
	Copying Garbage Collection
	Copying Garbage Collection, Illustrated
	Roots and Other Pointers
	Conservative Garbage Collection
	Generational Garbage Collection
	Region-Based Allocation
	Region Implementation

