
Lecture 26: Pointer Analysis

[Based on slides from R. Bodik]

Administrivia

• HKN survey on Wednesday. Worth 5 points (but you must show up!).

Today

• Points-to analysis: an instance of static analysis for understanding
pointers

• Andersen’s algorithm via deduction

• Implementation of Andersen’s algorithm in Prolog

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 1



General Goals of Static Analysis

• Determine run-time properties statically at compilation.

• Sample property: “is variable x a constant?”

• Since we don’t know the inputs, must consider all possible program
executions.

• Conservative (err on the side of caution) for soundness:

– allowed to say x is not a constant when it is,

– but not that x is a constant when it is not .

• Many clients: optimization, verification, compilation.

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 2



Client 1: Optimizing virtual calls in Java

• Motivation: virtual calls are costly, due to method dispatch

• Idea:

– determine the target of the call statically

– if we can prove call has a single target method, call the target
directly

• declared (static) types of pointer variables not precise enough for
this, so, analyze their run-time (dynamic) types.

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 3



Client 1: Example

class A { void foo() {...} }

class B extends A { void foo() {...} }

void bar(A a) { a.foo() } // OK to just call B.foo?

B myB = new B();

A myA = myB;

bar(myA);

• Declared type of a permits a.foo() to target both A.foo and B.foo.

• Yet we know only B.foo is the target.

• What program property would reveal this fact?

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 4



Client 2: Verification of casts

• In Java, casts are checked at run time: (Foo) e translates to

if (! (e instanceof Foo))

throw new ClassCastException()

• Java generics help readability, but still cast.

• The exception prevents any security holes, but is expensive.

• Static verification useful to catch bugs.

• Goal: prove that no exception will happen at runtime

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 5



Client 2: Example

class SimpleContainer { Object a;

void put (Object o) { a=o; }

Object get() { return a; } }

SimpleContainer c1 = new SimpleContainer();

SimpleContainer c2 = new SimpleContainer();

c1.put(new Foo()); c2.put(‘‘Hello’’);

Foo myFoo = (Foo) c1.get(); // Check not needed

What property will lead to desired verification?

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 6



Client 3: Non-overlapping fields in heap

E = new Thing (42);

for (j = 0; j < D.len; j += 1) {

if (E.len >= E.max)) throw new OverflowException ();

E.data[E.len] = D.data[i]; E.len += 1;

}

We assign to E.len, but we don’t have to fetch from D.len every time;
can save in register.

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 7



Pointer Analysis

• To serve these three clients, want to understand how pointers “flow,”
that is, how they are copied from variable to variable.

• Interested in flow from producers of objects (new Foo) to users
(myFoo.f).

• Complication: pointers may flow via the heap: a pointer may be
stored in an object’s field and later be read from this field.

• For simplicity, assume we are analyzing Java without reflection, so
that we know all fields of an object at compile time.

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 8



Analyses

• Client 1: virtual call optimization:

– which producer expressions new T() produced the values that may
flow to receiver p (a consumer) in a call?

– Knowing producers tells us possible dynamic types of p, and thus
also the set of target methods.

• Client 2: cast verification:

– Same, but producers include expressions (Type) p.

• Client 3: non-overlapping fields: again, same question

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 9



Flow analysis as a constant propagation

• Initially, consider only new and assignments p=r:

if (...) p = new T1(); else p = new T2();

r = p; r.f(); // what are possible dynamic types of r?

• We (conceptually) translate the program to

if (...) p = o1; else p = o2;

r = p; r.f(); // what are possible symbolic constant values r?

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 10



Abstract objects

• The oi constants are called abstract objects

• an abstract object oi stands for any and all concrete objects allo-
cated at the allocation site (‘new’ expression) with number i.

• When the analysis says a variable p may have value o7,

• we know p may point to any object allocated at

new7 Foo()

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 11



Flow analysis: Add pointer dereferences

x = new Obj(); // o1

z = new Obj(); // o2

w = x;

y = x;

y.f = z;

v = w.f;

• To propagate the abstract objects through p.f, must keep track of
the heap state—where the pointers point:

– y and w point to same object

– z and y.f point to same object, etc.

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 12



Flow-Insensitive Analysis

• The heap state may change at each statement, so ideally, track the
heap state separately at each program point as in dataflow analysis.

• But to be scalable (i.e. practical), analyses typically don’t do it.

• For example, to save space, can collapse all program points into one
consequently, they keep a single heap state, and disregard the con-
trol flow of the program (flow-insensitive analysis):

assume that statements can execute in any order, and any number
of times

• So, flow-insensitive analysis transforms this program

if (...) p = new T1(); else p = new T2();

r = p; p = r.f;

into this CFG:

r = p

p = r.f

p = new T1()

p = new T2()

•

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 13



Flow-Insensitive Analysis, contd.

• Motivation: Just “version” of program state, hence less space

• Flow-insensitive analysis is sound, assuming we mean that at least all
possible values of pointer from all possible executions found

• But it is generally imprecise:

– In effect, adds many executions not present in the original pro-
gram;

– Does not distinguish value of p at various program points.

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 14



Canonical Statements

• Java pointers can be manipulated in complex statements, such as

p.f().g.arr[i] = r.f.g(new Foo()).h

• To keep complexity under control, prefer a small set of canonical
statements that accounts for everything our analysis needs to serve
as intermediate representation:

p = new T() new

p = r assign

p = r.f getfield

p.f = r putfield

• Complex statements can be canonicalized

p.f.g = r.f =⇒ t1 = p.f; t2 = r.f; t1.g = t2

• Can be done with a syntax-directed translation

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 15



Handling of method calls: Arguments and return values

• Translate calls into assignments. For example,

Object foo(T x) { return x.f }

r = new T; s = foo(r.g)

could translate to

foo_retval = x.f;

r = new T; x = r.g; s = foo_retval;

(have used flow-insensitivity: order irrelevant)

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 16



Handling of method calls: targets of virtual calls

• Call p.f() may call many possible methods

• To do the translation shown on previous slide, must determine what
these targets are

• Suggest two simple methods:

– Use declared type of p.

– Check whole program to see which types are actually instantiated.

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 17



Handling of method calls: arrays

• We collapse all array elements into one.

• Represent this single element by a field named arr, so

p.g[i] = r becomes p.g.arr = r

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 18



Andersen’s Algorithm for flow-insensitive points-to
analysis

• Goal: computes a binary relation between variables and abstract
objects:

o flowsTo x when abstract object o may be assigned to x.

• (Or, if you prefer, x pointsTo o.)

• Strategy: Deduce the flowsTo relation from program statements:

– Statements are facts.

– Analysis is a set of inference rules.

– flowsTo relation is a set of facts inferred with analysis rules.

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 19



Statement facts

We’ll write facts in the form x predicate y

p = newi T()=⇒oi new p
p = r =⇒r assign p
p = r.f =⇒r gf(f) p (get field)
p.f = r =⇒r pf(f) p (put field)
and apply these inference rules:

• Rule 1) oi new p ⇒ oi flowsTo p

• Rule 2) oi flowsTo r ∧ r assign p ⇒ oi flowsTo p

• Rule 3) oi flowsTo a ∧ a pf(f) p ∧ p alias r ∧ r gf(f) b ⇒ oi flowsTo
b

• Rule 4) oi flowsTo x ∧ oi flowsTo y ⇒ x alias y

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 20



Meaning of the results

• When the analysis infers o flowsTo y, what did we prove?

• Nothing useful, usually, since o flowsTo y does not imply that there
is a program input for which o will definitely flow to y .

• BUT the useful results are places where analysis does not infer that
o flowsTo y:

• In those cases—because the analysis assumes conservatively that o

flows to y if there appears to be any possibility of that happening—
we can infer that not o flowsTo y for all inputs.

• Same arguments apply to alias, pointsTo relations and many other
static analyses in general.

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 21



Inference Example

The program:

x = new Foo(); // o1

z = new Bar(); // o2

w = x;

y = x;

y.f = z;

v = w.f;

The six facts:
o1 new x

o2 new z

x assign w

x assign y

z pf(f) y

w gf(f) v

Sample inferences:

o1 new x ⇒ o1 flowsTo x
o2 new z ⇒ o2 flowsTo z
o1 flowsTo x ∧ x assign w ⇒ o1 flowsTo w
o1 flowsTo x ∧ x assign y ⇒ o1 flowsTo y
o1 flowsTo y ∧ o1 flowsTo w ⇒ y alias w
o2 flowsTo z ∧ z pf(f) y ∧ y alias w ∧ w gf(f) v ⇒ o2 flowsTo v
etc.

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 22



Inference Example, contd.

• The inference must continue until no more facts can be derived; only
then do we know we have performed sound analysis.

• In this example:

– We have inferred o2 flowsTo v

– But we have not inferred o1 flowsTo v.

– Hence we know v will point only to instances of Bar (assuming the
example contains the whole program)

– Thus, casts (Bar) v will succeed

– Similarly, calls v.f() are optimizable.

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 23



Prolog program for Andersen algorithm

new(o1,x). % x=new_1 Foo()

new(o2,z). % z=new_2 Bar()

assign(x,y). % y=x

assign(x,w). % w=x

pf(z,y,f). % y.f=z

gf(w,v,f). % v=w.f

flowsTo(O,X) :- new(O,X).

flowsTo(O,X) :- assign(Y,X), flowsTo(O,Y).

flowsTo(O,X) :- pf(Y,P,F), gf(R,X,F), aliasP,R), flowsTo(O,Y).

alias(X,Y) :- flowsTo(O,X), flowsTo(O,Y).

• Prolog’s search is too general and potentially expensive.

• Prolog program may in general backtrack (exponential time)

• Fortunately, there are better algorithms as well that operate in
polynomial time.

Last modified: Mon Nov 28 15:16:46 2011 CS164: Lecture #26 24


	Lecture 26: Pointer Analysis
	General Goals of Static Analysis
	Client 1: Optimizing virtual calls in Java
	Client 1: Example
	Client 2: Verification of casts
	Client 2: Example
	Client 3: Non-overlapping fields in heap
	Pointer Analysis
	Analyses
	Flow analysis as a constant propagation
	Abstract objects
	Flow analysis: Add pointer dereferences
	Flow-Insensitive Analysis
	Flow-Insensitive Analysis, contd.
	Canonical Statements
	Handling of method calls: Arguments and return values
	Handling of method calls: targets of virtual calls
	Handling of method calls: arrays
	Andersen's Algorithm for flow-insensitive points-to analysis
	Statement facts
	Meaning of the results
	Inference Example
	Inference Example, contd.
	Prolog program for Andersen algorithm

