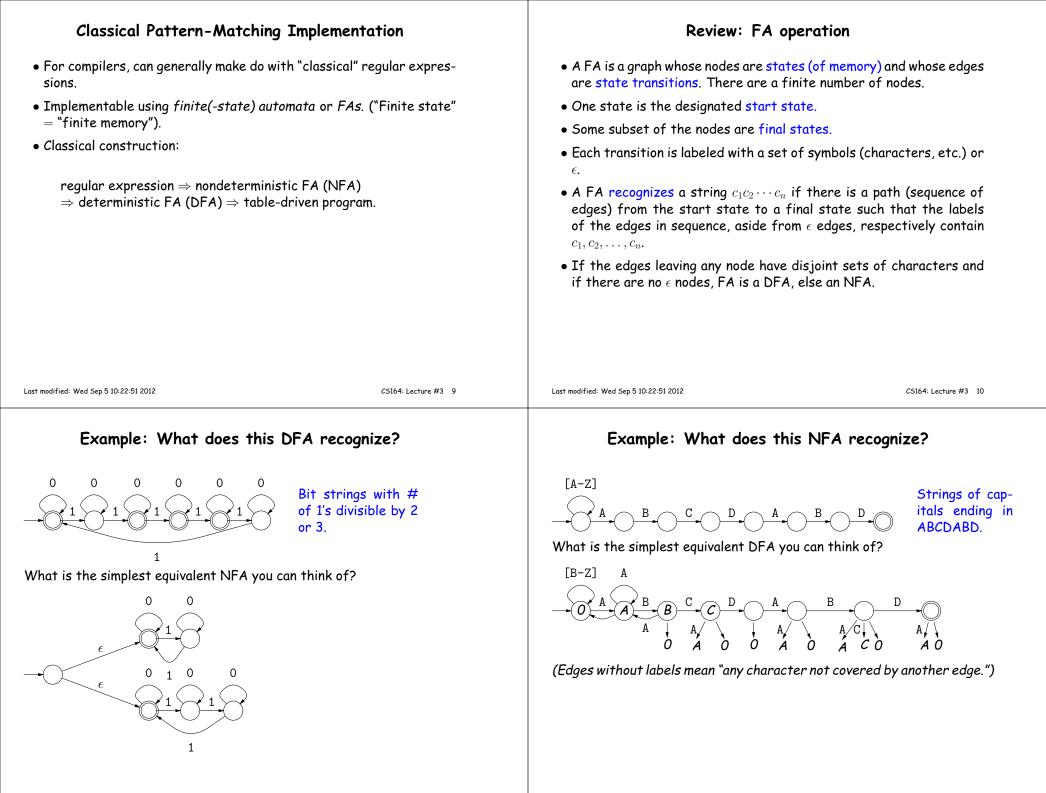
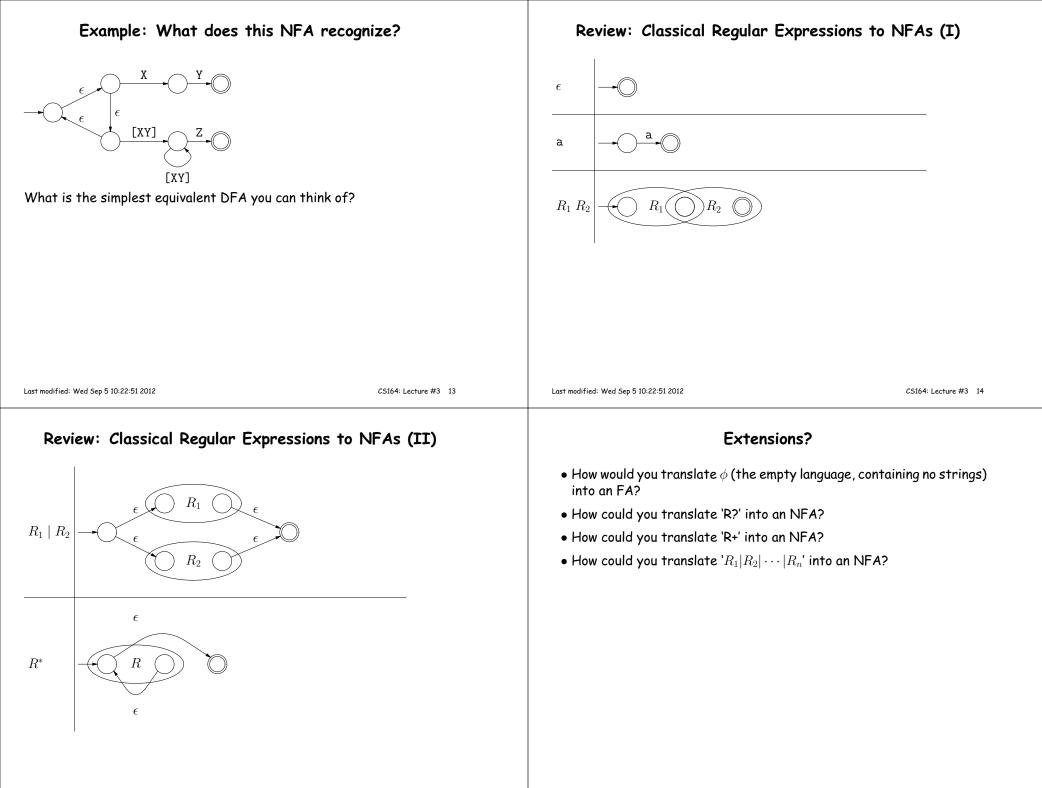
Lecture 3: Finite Automat	a	An Alternative Style for Describing Languages		
Administrivia		• Rather than giving a single pattern, we can give a set of rules.		
 Everyone should now be registered electronical our webpage. If you haven't, do so today! 	ly using the link on	• Each rule has the form $A: \alpha_1\alpha_2\cdots\alpha_n, n \ge 0,$		
 I'd like to have teams formed by next Monday at Please fill out the background survey linked to page. HW #2 now available (due next Tuesday). 		 where A is a symbol that is intended to stand for a language (set of strings)—a metavariable or nonterminal symbol. Each \(\alpha_i\) is either a literal character (like "a") or a nonterminal 		
 Tentative test dates (in class): 10 Oct, 7 Nov. Tentative project due dates: 4 Oct, 1 Nov, 3 De 	с.	 symbol. The interpretation of this rule is 		
		One way to form a string in $L(A)$ (the language denoted by A) is to concatenate one string each from $L(\alpha_1), L(\alpha_2), \ldots$		
		 (where L("c") is just the language {"c"}). This is Backus-Naur Form (BNF). A set of rules is a grammar. 		
		 Aside: You'll see that ':' written many different ways, such as '::=', '→', etc. We'll just use the same notation our tools use. 		
Last modified: Wed Sep 5 10:22:51 2012	CS164: Lecture #3 1	Last modified: Wed Sep 5 10:22:51 2012 C5164: Lecture #3 2		

Some Abbreviations

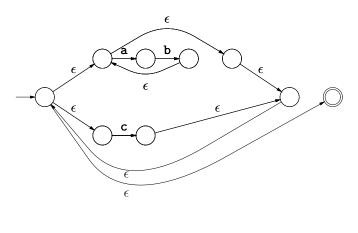
- The basic form from the last slide is good for formal analysis, but not for writing.
- So, we can allow some abbreviations that are obviously exandable into the basic forms:


Abbreviation	Meaning
$A: \mathcal{R}_1 \mid \cdots \mid \mathcal{R}_n$	$\begin{array}{c} A: \ \mathcal{R}_1 \\ \vdots \\ A: \ \mathcal{R}_n \end{array}$
$A: \cdots (\mathcal{R}) \cdots$	$\begin{array}{c} B: \ \mathcal{R} \\ A: \cdots B \cdots \end{array}$
$A: "c_1" \mid \cdots \mid "c_n"$ (likewise other character classes)	$[c_1 \cdots c_n]$


Some Technicalities

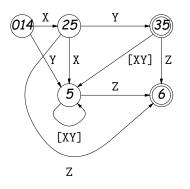
- From the definition, each nonterminal in a grammar defines a language. Often, we are interested in just one of them (the *start symbol*), and the others are auxiliary definitions.
- The definition of what a rule means ("One way to form a string in L(A) is...") leaves open the possibility that there are other ways to form items in L(A) than covered in the rule.
- We need that freedom in order to allow multiple rules for A, but we don't really want to include strings that aren't covered by some rule.
- So precise mathematical definitions throw in sentences like:

A grammar defines the *minimal* languages that contain all strings that satisfy the rules.

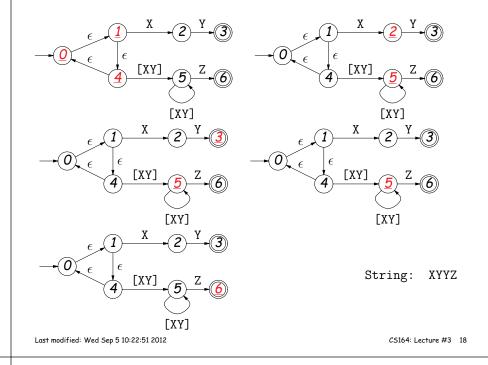

A Bi	g Restriction (for now)		Proof of Cla	im (I)
 we'll require that if a All the rules for the for A, or i = n (i.e., is the la We call such a restrement the languages defination guages. 	The e and the set of	hen either before all the rules r <i>regular</i> grammar. e called <i>regular lan-</i>	 Start with a regular expression, R, and make a (possibly not yet valid) rule, R: R Create a new (preceding) rule for each parenthesized expression. This will leave just the constructs 'X*', 'X+', and 'X?'. What do we do with them? 		ch parenthesized expression.
Last modified: Wed Sep 5 10:22:51 2012		CS164: Lecture #3 5	Last modified: Wed S	5ep 5 10:22:51 2012	CS164: Lecture #3 6
F	Proof of Claim (II)			Example	2
Replace construct	\ldots with Q , where		• Consider	r the regular expression ("+"	" "-")?("0" "1")+
<i>R</i> *	Q : Q : R Q		1. R 2.	£: ("+" "-")?("0" "1")+ Q₁: "+" "-"	replace with
<i>R</i> +	Q : R Q : R Q			Q_2 : "O" "1" R: Q_1 ? Q_2 +	replace with
R?	Q : Q : R		3.	$f Q_3: \ \epsilon \ \mid \ Q_1 \ Q_4: \ Q_2 \ \mid \ Q_2 \ Q_4 \ R: \ Q_3 \ Q_4$	

Example of Conversion

How would you translate ((ab)*|c)* into an NFA (using the construction above)?



Last modified: Wed Sep 5 10:22:51 2012


C5164: Lecture #3 17

Review: Converting to DFAs

- OBSERVATION: The set of states that are marked (colored red) changes with each character in a way that depends only on the set and the character.
- In other words, machine on previous slide acted like this DFA:

Abstract Implementation of NFAs

DFAs as Programs

• Can realize DFA in program with control structure:

```
state = INITIAL;
for (s = input; *s != '\0'; s += 1) {
    switch (state):
    case INITIAL:
        if (*s == 'a') state = A_STATE; break;
    case A_STATE:
        if (*s == 'b') state = B_STATE; else state = INITIAL; break;
    ...
    }
}
return state == FINAL1 || state == FINAL2;
```

• Or with data structure (table driven):

```
state = INITIAL;
for (s = input; *s != '\0'; s += 1)
    state = transition[state][s];
return isfinal[state];
```

What Flex Does

- Flex program specification is giant regular expression of the form $R_1|R_2|\cdots|R_n$, where none of the R_i match ϵ .
- Each final state labeled with some action.
- Converted, by previous methods, into a table-driven DFA.
- But, this particular DFA is used to recognize *prefixes* of the (remaining) input: initial portions that put machine in a final state.
- Which final state(s) we end up in determine action. To deal with multiple actions:
 - Match longest prefix ("maximum munch").
 - If there are multiple matches, apply first rule in order.

How Do They Do It?

- How can we use a DFA to recognize longest match?
- How can we use DFA to act on first of equal-length matches?
- How can we use a DFA to handle the R_1/R_2 pattern (matches just R_1 but only if followed by R_2 , like R_1 (?= R_2) in Python)?

CS164: Lecture #3 22	Last modified: Wed Sep 5 10:22:51 2012	CS164: Lecture #3 21	Last modified: Wed Sep 5 10:22:51 2012