Lecture 6: General and Bottom-Up Parsing

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 1

Project #1 Notes

e Project involves generating an AST for Python dialect.

e Our tools provide extended BNF (BNF + regular-expression nota-

tions like '*', '+, and '?') both for context-free and lexical defini-
tions.

e Tools also provide largely automatic AST building:

- Tokens double as AST operators.

- By default, each rule computes the list of all trees built by its
right-hand side.

- The "' notation allows you to build a tree designating the opera-
tor.

- Or, in an action, you can use '$~(...)" to build an AST node, and
'$*' to denote the list of children's ASTs.

e We've also provided methods to print nodes.

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 2

Project #1 Notes (II)

e In my solution, a majority of grammar rules look like this:

attributeref: primary "."! identifier
{ $$ = $ " (ATTRIBUTEREF, $*); 1}

and all the printing, etc. is taken care of.
e Dummy tokens like ATTRIBUTEREF are first defined with
%token ATTRIBUTEREF "@attributeref"
e Ina few cases, I can just write
exprl : exprl "or"" exprl

and the action is generated automatically.

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 3

A Little Notation

Here and in lectures to follow, we'll often have to refer to general
productions or derivations. In these, we'll use various alphabets to mean
various things:

e Capital roman letters are nonterminals (A, B,...).
e Lower-case roman letters are terminals (or tokens, characters, etc.)

e Lower-case greek letters are sequences of zero or more terminal
and nonterminal symbols, such as appear in sentential forms or on
the right sides of productions (o, 3,...).

e Subscripts on lower-case greek letters indicate individual symbols
within them, so @ = aj«, ..., and each q; is a single terminal or
nonterminal.

For example,
e A: a might describe the productione: e ’+’ t,

e B = oAy = afy might describe the derivation steps e =e ’+’ t
=e '+’ ID(aise ’+’; Aist; Bise; and 7y is empty.)

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 4

Fixing Recursive Descent

e First, let's define an impractical but simple implementation of a top-
down parsing routine.

e For nonterminal A and string S=cic;.. . c,, we'll define parse(A, S) to
return the length of a valid substring derivable from A.

e That is, parse(A, cic ... ¢,) = k, where

C1C ... CL Clpy1Cky2 ... Cp

*

A=

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 5

Abstract body of parse(A,S)

e Can formulate top-down parsing analogously o NFAs.

parse (A, S):
"""Assuming A is a nonterminal and S = c¢i¢;...¢, is a string, return
integer k such that A can derive the prefix string c¢;...c; of S."""
Choose production ‘A: ajas---ay’ for A (nondeterministically)
k=0
for x in ag, ag, -+, ap:
if x is a terminal:
if x == ¢pqq:
k+=1
else:
GIVE UP
else:
k += parse (X, Cpy1---Cp
return k

e Assume that the grammar contains one production for the start
symbol: p: v .

e We'll say that a call to parse returns a value if some set of choices
for productions (the blue step) would return a value (just like NFA).

e Then if parse(p, S) returns a value, S must be in the language.
Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 6

Example

Consider parsing S="ID+ID-" with a grammar from last time:
p : e+ Afsutiegssfiih path ddiraughpihe pregram:

e : t parse(p, S))
| e /7 ¢ parscehgdse P : e ’4"
| o %7 t Choose 55 C k
parsec(hdosg e : e A S
: ID Choose e
parseCe S)

parse(hdos ‘e t:

choosaeLz te (e

C%eCkhoo[sg ' 0K, so kg += 1;

return gheck (S[}{;ﬁ ad?ﬁd ER k%o return 1
return 1 (tand afld to

Check S[2] 52 ﬂ%{l]ﬂj_—— q{xvg B (8[2] == ’¥)
parse(t, S3): # Sd == "ID —H"

k; means ‘“the
variable k in the
call to parse that
is nested i deep.” choose t : ID:
Outermost k is check S;l[ks+1] == S3[1] == ID; OK
ki. Likewise for kg+=1; return 1 (so ky += 1)
S return 3

Check S[k;+1] == S[4] == ’+4’: OK

k; +=1; return 4

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 7

Making a Deterministic Algorithm

e If we had an infinite supply of processors, could just spawn new ones
at each "Choose" line.

e Some would give up, some loop forever, but on correct programs, at
least one processor would get through.

e To do this for real (say with one processor), need to keep track of
all possibilities systematically.

e This is the idea behind Earley's algorithm:

- Handles any context-free grammar.
- Finds all parses of any string.

- Can recoghize or reject strings in O(N?) time for ambiguous gram-
mars, O(N?) time for “"nondeterministic grammars"”, or O(N) time
for deterministic grammars (such as accepted by Bison).

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 8

Earley's Algorithm: I

e First, reformulate to use recursion instead of looping. Assume the
string S =¢;--- ¢, is fixed.
e Redefine parse:
parse (A: aef3, s, k):
"""Assumes A: af is a production in the grammar,

0 <= s <= k <= n, and « can produce the string ce .- -¢;.
Returns integer j such that (3 can produce cjyi---cj."""

e Or diagrammatically, parse returns an integer j such that:

Cl * CsCoyl " CpChyl " CjCjy1 " Cy
—_—

o= /=

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 9

Earley's Algorithm: IT

parse (A: aef3, s, k):
"""Assumes A: af is a production in the grammar,
0 <= s <= k <= n, and « can produce the string c..---¢;.
Returns integer j such that can produce cjip---¢;."""
if B is empty:
return k
Assume (3 has the form z0
if = is a terminal:
if x == cpy1:
return parse(A: ared, s, k+1)
else:
GIVE UP
else:
Choose production ‘x: k’ for x (nondeterministically)
j = parse(x: ek, k, k)
return parse (A: axed, s, j)

e Now do all possible choices that result in such a way as to avoid
redundant work (“nondeterministic memoization").

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 10

Chart Parsing

e Idea is to build up a table (known as a chart) of all calls to parse
that have been made.

e Only one entry in chart for each distinct triple of arguments (A: « e 3, s, k).

e We'll organize table in columns numbered by the k parameter, so
that column k represents all calls that are looking at ¢, in the
input.

e Each column contains entries with the other two parameters: [A: « e 3, 5],
which are called items.

e The columns, therefore, are item sets.

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 11

Example

Grammar Input String

p:e’Hd - I+ 1

e:s1I | e’+ e
|

Headings are values of k and ¢, (raised symbols).

0 B 1 I 2 * 3

I

ec 17, 0 es: ’-’e, O|ge: s Te, O ie: e '+’ ee,
ec '+’ e, O|fe: sel, O |he: e '+’ ¢, O|je: es I, 3
es I, O ks: e, 3

.)_J’ 0 le: 8 .I, 3

4
s Je, 3
e '+’ eo, O
ce’1’, 0

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 12

0

Example, completed

e Last slide showed only those items that survive and get used. Algo-
rithm actually computes dead ends as well (unlettered, in red).

+

0 B 1 I 2

e ’1’, 0 es: '-’e, O|ge: s Te, O
f.e: s I, Olhe: e ® '+ e, O}
p: ee 4, 0

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 13

Adding Semantic Actions

e Pretty much like recursive descent. The call parse(A: ae 3, s, k)
can return, in addition to j, the semantic value of the A that matches
characters ¢,y - - c;.

e This value is actually computed during calls of the form parse(A: o'e,
s, k) (i.e., where the (3 part is empty).

e Assume that we have attached these values to the nonterminals in
@, so that they are available when computing the value for A.

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 14

Ambiguity

e Ambiguity only important here when computing semantic actions.

e Rather than being satisfied with a single path through the chart, we
look at all paths.

e And we attach the set of possible results of parse(Y: ex, s, k)
to the nonterminal Y in the algorithm.

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 15

	Lecture 6: General and Bottom-Up Parsing
	Project #1 Notes
	Project #1 Notes (II)
	A Little Notation
	Fixing Recursive Descent
	Abstract body of parse(A,S)
	Example
	Making a Deterministic Algorithm
	Earley's Algorithm: I
	Earley's Algorithm: II
	Chart Parsing
	Example
	Example, completed
	Adding Semantic Actions
	Ambiguity

