
Lecture 6: General and Bottom-Up Parsing

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 1

Project #1 Notes

• Project involves generating an AST for Python dialect.

• Our tools provide extended BNF (BNF + regular-expression nota-
tions like ‘*’, ‘+’, and ‘?’) both for context-free and lexical defini-
tions.

• Tools also provide largely automatic AST building:

– Tokens double as AST operators.

– By default, each rule computes the list of all trees built by its
right-hand side.

– The ‘^’ notation allows you to build a tree designating the opera-
tor.

– Or, in an action, you can use ‘$^(...)’ to build an AST node, and
‘$*’ to denote the list of children’s ASTs.

• We’ve also provided methods to print nodes.

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 2

Project #1 Notes (II)

• In my solution, a majority of grammar rules look like this:

attributeref: primary "."! identifier

{ $$ = $^(ATTRIBUTEREF, $*); }

;

and all the printing, etc. is taken care of.

• Dummy tokens like ATTRIBUTEREF are first defined with

%token ATTRIBUTEREF "@attributeref"

• In a few cases, I can just write

expr1 : expr1 "or"^ expr1

and the action is generated automatically.

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 3

A Little Notation

Here and in lectures to follow, we’ll often have to refer to general
productions or derivations. In these, we’ll use various alphabets to mean
various things:

• Capital roman letters are nonterminals (A, B,. . .).

• Lower-case roman letters are terminals (or tokens, characters, etc.)

• Lower-case greek letters are sequences of zero or more terminal
and nonterminal symbols, such as appear in sentential forms or on
the right sides of productions (α, β, . . .).

• Subscripts on lower-case greek letters indicate individual symbols
within them, so α = α1αn . . . αn and each αi is a single terminal or
nonterminal.

For example,

• A : α might describe the production e: e ’+’ t,

• B ⇒ αAγ ⇒ αβγ might describe the derivation steps e ⇒e ’+’ t

⇒e ’+’ ID (α is e ’+’; A is t; B is e; and γ is empty.)

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 4

Fixing Recursive Descent

• First, let’s define an impractical but simple implementation of a top-
down parsing routine.

• For nonterminal A and string S=c1c2 . . . cn, we’ll define parse(A, S) to
return the length of a valid substring derivable from A.

• That is, parse(A, c1c2 . . . cn) = k, where

c1c2 . . . ck
︸ ︷︷ ︸

A
∗

=⇒

ck+1ck+2 . . . cn

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 5

Abstract body of parse(A,S)

• Can formulate top-down parsing analogously to NFAs.

parse (A, S):

"""Assuming A is a nonterminal and S = c1c2 . . . cn is a string, return

integer k such that A can derive the prefix string c1 . . . ck of S."""

Choose production ‘A: α1α2 · · ·αm’ for A (nondeterministically)

k = 0

for x in α1, α2, · · · , αm:

if x is a terminal:

if x == ck+1:

k += 1

else:

GIVE UP

else:

k += parse (x, ck+1 · · · cn)

return k

• Assume that the grammar contains one production for the start
symbol: p: γ ⊣.

• We’ll say that a call to parse returns a value if some set of choices
for productions (the blue step) would return a value (just like NFA).

• Then if parse(p, S) returns a value, S must be in the language.
Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 6

Example

Consider parsing S="ID*ID⊣" with a grammar from last time:

p : e ’⊣’

e : t

| e ’/’ t

| e ’*’ t

t : ID

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 7

Example

Consider parsing S="ID*ID⊣" with a grammar from last time:

p : e ’⊣’

e : t

| e ’/’ t

| e ’*’ t

t : ID

ki means “the
variable k in the
call to parse that
is nested i deep.”
Outermost k is
k1.

A failing path through the program:

parse(p, S):

Choose p : e ’⊣’:

parse(e, S):

Choose e : t:

parse(t, S):

choose t : ID:

check S[1] == ID; OK, so k3 += 1;

return 1 (= k3; added to k2)

return 1 (and add to k1)

Check S[2] == S[k1+1] == ’⊣’: GIVE UP (S[2] == ’*’)

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 7

Example

Consider parsing S="ID*ID⊣" with a grammar from last time:

p : e ’⊣’

e : t

| e ’/’ t

| e ’*’ t

t : ID

ki means “the
variable k in the
call to parse that
is nested i deep.”
Outermost k is
k1. Likewise for
S.

A successful path through the program:

parse(p, S):

Choose p : e ’⊣’:

parse(e, S):

Choose e : e ’*’ t:

parse(e, S):

choose e : t:

parse(t, S):

choose t : ID:

check S[1] == ID; OK, so return 1

return 1 (so k2 += 1)

check S[k2] == ’*’; OK, k2 += 1

parse(t, S3): # S3 == "ID ⊣"

choose t : ID:

check S3[k3+1] == S3[1] == ID; OK

k3+=1; return 1 (so k2 += 1)

return 3

Check S[k1+1] == S[4] == ’⊣’: OK

k1 +=1; return 4

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 7

Making a Deterministic Algorithm

• If we had an infinite supply of processors, could just spawn new ones
at each “Choose” line.

• Some would give up, some loop forever, but on correct programs, at
least one processor would get through.

• To do this for real (say with one processor), need to keep track of
all possibilities systematically.

• This is the idea behind Earley’s algorithm:

– Handles any context-free grammar.

– Finds all parses of any string.

– Can recognize or reject strings in O(N 3) time for ambiguous gram-
mars, O(N 2) time for “nondeterministic grammars”, or O(N) time
for deterministic grammars (such as accepted by Bison).

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 8

Earley’s Algorithm: I

• First, reformulate to use recursion instead of looping. Assume the
string S = c1 · · · cn is fixed.

• Redefine parse:

parse (A: α • β, s, k):

"""Assumes A: αβ is a production in the grammar,

0 <= s <= k <= n, and α can produce the string cs+1 · · · ck.

Returns integer j such that β can produce ck+1 · · · cj."""

• Or diagrammatically, parse returns an integer j such that:

c1 · · · cs cs+1 · · · ck
︸ ︷︷ ︸

α
∗

=⇒

ck+1 · · · cj
︸ ︷︷ ︸

β
∗

=⇒

cj+1 · · · cn

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 9

Earley’s Algorithm: II

parse (A: α • β, s, k):

"""Assumes A: αβ is a production in the grammar,

0 <= s <= k <= n, and α can produce the string cs+1 · · · ck.

Returns integer j such that β can produce ck+1 · · · cj."""

if β is empty:

return k

Assume β has the form xδ

if x is a terminal:

if x == ck+1:

return parse(A: αx • δ, s, k+1)

else:

GIVE UP

else:

Choose production ‘x: κ’ for x (nondeterministically)

j = parse(x: •κ, k, k)

return parse (A: αx • δ, s, j)

• Now do all possible choices that result in such a way as to avoid
redundant work (“nondeterministic memoization”).

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 10

Chart Parsing

• Idea is to build up a table (known as a chart) of all calls to parse

that have been made.

• Only one entry in chart for each distinct triple of arguments (A: α • β, s, k).

• We’ll organize table in columns numbered by the k parameter, so
that column k represents all calls that are looking at ck+1 in the
input.

• Each column contains entries with the other two parameters: [A: α • β, s],
which are called items.

• The columns, therefore, are item sets.

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 11

Example

Grammar
p : e ’⊣’

e : s I | e ’+’ e

s : ’-’ |

Input String
- I + I ⊣

Chart. Headings are values of k and ck+1 (raised symbols).

0 - 1 I 2 + 3 I

a. p: •e ’⊣’, 0 e. s: ’-’•, 0 g. e: s I•, 0 i. e: e ’+’ •e, 0

b. e: •e ’+’ e, 0 f. e: s•I, 0 h. e: e •’+’ e, 0 j. e: •s I, 3

c. e: •s I, 0 k. s: •, 3

d. s: •’-’, 0 l. e: s •I, 3

4 ⊣ 5
m. e: s I•, 3 p. p: e ’⊣’ •, 0

n. e: e ’+’ e•, 0

o. p: e•’⊣’, 0

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 12

Example, completed

• Last slide showed only those items that survive and get used. Algo-
rithm actually computes dead ends as well (unlettered, in red).

0 - 1 I 2 + 3 I

a. p: • e ’⊣’, 0 e. s: ’-’•, 0 g. e: s I•, 0 i. e: e ’+’ • e, 0

b. e: • e ’+’ e, 0 f. e: s• I, 0 h. e: e • ’+’ e, 0 j. e: • s I, 3

c. e: • s I, 0 p: e • ’⊣’, 0 k. s: •, 3

d. s: • ’-’, 0 l. e: s • I, 3

s: •, 0 s: • ’-’, 3

e: s • I, 0 e: • e ’+’ e, 3

4 ⊣ 5
m. e: s I•, 3 p. p: e ’⊣’ •, 0

n. e: e ’+’ e•, 0

o. p: e• ’⊣’, 0

e: e • ’+’ e, 3

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 13

Adding Semantic Actions

• Pretty much like recursive descent. The call parse(A: α • β, s, k)

can return, in addition to j, the semantic value of the A that matches
characters cs+1 · · · cj.

• This value is actually computed during calls of the form parse(A: α′
•,

s, k) (i.e., where the β part is empty).

• Assume that we have attached these values to the nonterminals in
α, so that they are available when computing the value for A.

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 14

Ambiguity

• Ambiguity only important here when computing semantic actions.

• Rather than being satisfied with a single path through the chart, we
look at all paths.

• And we attach the set of possible results of parse(Y: •κ, s, k)

to the nonterminal Y in the algorithm.

Last modified: Wed Sep 19 10:34:38 2012 CS164: Lecture #6 15

	Lecture 6: General and Bottom-Up Parsing
	Project #1 Notes
	Project #1 Notes (II)
	A Little Notation
	Fixing Recursive Descent
	Abstract body of parse(A,S)
	Example
	Making a Deterministic Algorithm
	Earley's Algorithm: I
	Earley's Algorithm: II
	Chart Parsing
	Example
	Example, completed
	Adding Semantic Actions
	Ambiguity

