
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS 164 P. N. Hilfinger
Fall 2013

Project #2: Static Analyzer (version 6)

Due: Monday, 18 November 2013

The second project picks up where the last left off. Beginning with the AST you produced
in Project #1, you are to perform a number of static checks on its correctness, annotate it
with information about the meanings of identifiers, and perform some rewrites. Your job is
to hand in a program (and its testing harness), including adequate internal documentation
(comments), and a thorough set of test cases, which we will run both against your program
and everybody else’s.

1 Summary

Your program is to perform the following processing:

1. Add a list of indexed declarations, as described in §3.

2. Decorate each id and type var node by adding a declaration index that links it to a
declaration in the list. This is also described in §3.

3. Perform several rewrites of the AST, described in §4:

(a) Rewrite allocation expressions to use new AST nodes that were not produced by
the parser.

(b) Rewrite method calls into ordinary function calls.

(c) Add id nodes to operators (binop, unop, comparisons, slice, substription.)

4. Enforce the language dialect described in subsequent sections.

The remaining sections describe these in more detail.

1

Project #2 2

2 Input and Output

You can start either from a parser that we provide, or you can augment your own parser. In
either case, the output from your program will look essentially like that from the first project,
but with some additional annotations. We’ll augment pyunparse to show your annotations.

Full Python is a very dynamic language; one may insert new fields and methods into
classes or even into individual instances of classes at any time. One may redefine functions,
methods, modules, and classes at will. For this project, we will greatly restrict the language
to give it static typing, and your project will infer those types in most places.

3 Output Format

The output ASTs differ from input ASTs in these respects:

• Identifier nodes and type variables will have an extra annotation at the end:

(id N name D) (type_var N name D)

where D ≥ 1 is an integer declaration index.

• Compilations will now have the syntax

Compilation : ’(’ "module" N Stmt* ’)’ Decl*

The Decls, described in Table 1, represent declarations. They are indexed by the
declaration indices used in id nodes, and appear in order according to their index.

This choice of declaration indices in identifiers or type variables must reflect the scope
rules of the language: two occurrences of identifier or type variable I will have the same
decoration iff they both are supposed to refer to the same thing. The scope of a type variable
is the class or function that uses it in its type parameters or its parameter list or return
type. Furthermore, the scope of type variables defined in a class header, like that of method
names and instance variables, does not include any def statements in the class. That is, the
definition of $T at line 1, below is not available inside of f and g.

class Foo of [$T]: # Line 1

def f(self, x::$T): # $T does not refer to the same type as Line 1

pass

def g(self):

x::$T = 3 # Illegal; $T from Line 1 is not visible

You may not otherwise introduce type variables. For example, this trivial program is illegal,
because $a is not defined.

foo::$a = 3

Project #2 3

There is one declaration index (and corresponding declaration node) for each distinct
declaration in the program: each class definition, local variable, parameter, method definition,
and instance variable. There are also declarations for the built-in types and functions in the
standard prelude. Not all declarations appear in the outputted list; declarations attached to
new type generated by the freshen method generally won’t appear. As a result there may
be gaps in the index numbers. Table 1 shows the formats of the declaration nodes.

The set of declarations is not the same as a symbol table (or environment). It is an
undifferentiated set of all declarations without regard to scopes, declarative regions, etc.
You’ll need some entirely separate data structure (which you’ll never output) to keep track of
the mappings of identifiers to declarations at various points in the program. Some declarations
don’t correspond to anything you can point to or name in the program. For example, under
our rules, the module name __main__ is not defined within your program, and references to
it is an error, even though this module certainly exists and contains lots of definitions you
can reference.

4 Rewriting

For the sake of the code generator (and to some extent, to simplify parts of semantic analysis),
your program must perform several rewritings.

4.1 Identifying types

During parsing, you can’t always tell which identifiers represent types. For example, the A in
A(3) could denote either a type or a value. Rewrite any id node that is a type with a type

AST node containing that id node (if it is not already part of one, that is.)

4.2 init

For every class that does not have an __init__ method, add a default method:

def __init__(self):

pass

4.3 Allocators

Whenever you encounter a “call” node whose first operand is a type (which is Python’s way
of writing the Java or C++ new operator):

(call N T (expr list E1 ...En)),

convert it to the expression

(call1 (id N init) (expr list N (new N T) E1 ...En))

and decorate the id node with a declaration index as if this method had actually been written
explicity. The new node, call1, is just like call, but returns the value of its first argument
rather than the value returned by the __init__ function.

Project #2 4

Table 1: Declaration nodes. The list of the declaration nodes for a program in order by index follows the

AST. In each case, N is the declaration index, unique to each declaration node instance.

Node Meaning

(vardecl N I P T) Variable named I. P is the declaration index of the enclosing function
(or module, for a global variable). T defines its static type (see §6,
below).

(typevardecl N I) A type variable named I.

(paramdecl N I P K T) Parameter named I of type T defined as the Kth parameter (number-
ing from 0) of the function whose declaration index is P .

(instancedecl N I P T) Instance variable named I of type T defined in the class with declara-
tion index P .

(funcdecl N I P T

(index list m1 · · ·mn))

A defed function (including instance methods for this project, since
we don’t use inheritance) named I of type T , defined in a function,
class, or module with declaration index P . The mi are the declaration
numbers of local variables, parameters, and local defs defined in the
body of the function. The parameters come first, in the order they
appear in the formals.

(classdecl N I

(index list p1 · · · pn)

(index list m1 · · ·mn′))

Class declaration for class named I. The pi are the declaration num-
bers of the type parameters of the class (all type variables). The mi

are the declaration numbers of the members of the class. Each should
be listed in order of appearance in the source text of the class.

(moduledecl N __main__

(index list m1 · · ·mn))

Module declaration for the module __main__ (the only one in our
project). The index list gives the indices of declarations in the mod-
ule, in the order they appear in the source.

Project #2 5

4.4 Attributes of classes

Whenever you encounter a node of the form

(attributeref N E1 I),

where E1 denotes a known class that defines I (an id node) as a method, replace the
attributeref with I, after assigning the appropriate declaration index to I. Thus, after
the Python class declaration

class A(object):

def f (self): ...

The statement

g = A.f

becomes, in effect,

g = f

but with f decorated with the appropriate declaration of method f. It is an error for E1

to denote a type that is not known to define I. E1 can also be a parameterized type (as in
PriorityQueue of [Int].push, but the type parameters are ignored.

4.5 Methods

During type resolution (see §8), you will encounter attribute references E1.x where E1 is an
expression having a value (as opposed to a class), and the type of E1 resolves to a specific
class. When this happens in the context of a method call, E1.x(E2, . . . , En), and x is the name
of a method in E1’s class, convert the expression to the ordinary function call x(E1, . . . , En),
decorating x with the appropriate declaration index for the method it names. It is an error
if type resolution does not eventually compute a specific class as the type of E1. It is also an
error if this E1.x (again where x denotes a method) occurs in a context other than a method
call. That is,

class A(object):

def f(self):

...

x = A()

y = x.f # ERROR: x.f denotes a "bound method" that is not

called immediately.

4.6 None

Rewrite all occurrences of the identifier None as the function call None (). Report an error
if None is defined by def, class, or is assigned to.

Project #2 6

Table 2: Operators and their associated function names. The standard prelude (§9) will contain definitions of

these functions. For now, we translate subscription and slicing the same whether they appear as an assignment

target or not. We’ll deal with the difference for targets in a later project.

Operator Function Operator Function

+ (binary) __add__ ·[·] (subscription AST) __getitem__

- (binary) __sub__ ·[·:·] (slicing AST) __getslice__

__mul__ < __lt__

/, // __floordiv__ > __gt__

% __mod__ >= __ge__

* __pow__ <= __le__

- (unary) __neg__ == __eq__

+ (unary) __pos__ != __ne__

not __not__ notin __notcontains__

in __contains__ isnot __isnot__

is __is__

4.7 Operators

The skeleton has already incorporated this rewrite; it’s here for your information. In real
Python, the binary operators, unary operators, comparison operators, subscription, and slic-
ing operators are closely related to certain methods (with names of the form N). Simillarly,
we’re going to handle these operators—type rules and all—using the same rules as for pro-
cedures. The standard prelude (see §9) will contain a bunch of definitions of functions to
be called to evaluate these operators. To each of these operators, we’ve added an additional
last child—an id node—containing the name of the appropriate method, as given in Table 2,
which we use as the function and resolve using the usual rules for resolving function calls.
(Well, not quite the same code, perhaps, since the function called and the arguments will be
in different locations in the tree from an ordinary call, but proper use of virtual methods can
allow you to use the same logic.)

5 Overloading

We’re extending Python to allow overloaded functions (and as a result, operators). The rule
is that there can be multiple definitions of functions (including methods) within a declarative
region, thus overloading them. It is an error to attempt to overload any other kind of entity
other than a function.

Overloaded names are disambiguated on the basis of type rules. For example, this is legal
in our dialect:

def f():

print "f()"

def f(x):

print "f(x)"

Project #2 7

f(3)

To keep things simple, we’ll still say that any declaration of a function in one region hides
all those in enclosing regions, so that the following is illegal, even though no definitions of f
inside g can possibly satisfy the call:

def f():

pass

def g():

def f(x):

pass

f() # ERROR, the outer f is not visible.

Since operator expressions are effectively converted into function calls (see §4.7), it follows
that operators can be overloaded as well.

6 Types

For this project, the possible types are either builtin types, user classes, or function types.

6.1 Type representation

Type variables, class, and function types are represented as in project #1:

(type N (id N type-name) (type list N types)).

(function type N return-type (type list N types)).

(type var N type-name)

(All id and type var nodes here and below should also have appropriate declaration indices
attached.) If we have the Python statements:

class A:

def f(self, x::int)::bool: ...

x::A = A()

then the expression A.f has the type

(function_type 0 (type 0 (id 0 bool) (type_list 0))

(type_list 0 (type 0 (id 0 A) (type_list 0))

(type 0 (id 0 int) (type_list 0))))

(the line-number attributes here are irrelevant).
Each identifier and expression has the most general static type that is consistent with the

type rules of the language (§8). As discussed in lecture, the most general type is one that is
compatible with all choices of types that obey the type rules and incompatible with all others.
For example, the function

Project #2 8

def id(x):

return x

has type ($t)->$t, since id can take any type of argument and returns a value of the same
type. On the other hand, the functions

def sub(x,y):

return x-y

def intid(z::int):

return z

have types (int,int)->int and (int)->int, because ‘-’ in our subset operates only on
integers and the type rule for :: notations requires that z have the type int.

7 Various Restrictions

Our Python dialect is a rather violent restriction of Python designed, among other things, to
make the language statically typed.

1. We restrict ourselves to the following types:

– int.

– bool.

– file.

– str (string).

– range (type of xrange’s result. This is not the standard Python type name.)

– list(T): that is, lists all of whose elements have the same type.

– tuple0(), tuple1(T1), tuple2(T1, T2), tuple3(T1, T2, T3): These are tuples
with known, constant numbers of elements having the types Ti. Yes, we only do
the ones up to 3, but that’s enough to make the point.

– dict(K,V): Maps from a type K to a type V . The type K is restricted to be
int, bool, or str.

– User-defined classes.

– Function types.

2. All methods (defined by defs that occur immediately within a class definition) are
instance methods (there are no static methods), and all therefore have at least one
parameter. The first parameter of a method has the enclosing class as its type. (The
first parameter of a Python method corresponds to this in a Java program.)

3. class and def statements declare constants, which may not be assigned to. If a variable
is assigned to in some declarative region (thus becoming a local variable or instance
variable), its name may not then be defined by def or class statements immediately
within that same region.

Project #2 9

4. Likewise, classes, methods, and functions may not be redefined immediately within the
same declarative region (function, class, or file).

5. The only attributes of a class (things referenced with ‘.’) defined by a class declaration
in the program are instance variables explicitly assigned to in the body of the class
(outside of any methods), or methods defined by def immediately within the class
body. Thus, the only attributes of class C:

class C(object):

a = 3

def f(self): ...

are a and f.

6. The scope of parameters, local variable declarations (assignments to local variables)
and defs that are nested inside other function bodies or classes includes the entire
declarative region that contains them (before and after the declaration, in other words).
In the case of classes, this declarative region does not include the bodies of methods
within those classes (so that, for example,

class A(object):

x = 3

def f(self):

if self.x > 0: # OK

return x # ERROR: x is unknown here.

This is as in regular Python.)

7. The scope of outer-level declarations (those that are not nested inside a def or class
declaration) begins with the declaration and continues to the end of the program (ex-
cept where hidden). Thus, at the outer level, you may not use identifiers before their
definition, so that the program

def f():

print y

y = 3

is erroneous (y is used before it is declared by assignment.) However,

def g():

def h():

print y

y = 3

is fine, because in this case, y is nested in g.

8. All instances of identifiers and type variables in the program other than the identifiers
denoting operators (like +) in binop, unop, compare and compare left nodes must have
known declarations.

Project #2 10

9. The type rules §8 must successfully supply types for all (sub)expressions. Furthermore,
for each complete statement at the outer level, there may be no free, unbound type
variables; types of global variables must be completely determined by the statement
that assigns them.

10. No bound method values, unless they are immediately called. See §4.5.

11. Classes may not be used as values. The only valid uses are for allocators, type designa-
tors (after ‘::’), or for fetching attributes (as in A.f). Builtin classes may not be used
for allocators.

8 Type Rules

The language subset is chosen so that type inference can assign types to all expressions and
statically check the validity of all constructs. A correct program obeys the rules in Figures 1,
which are in the style of rules illustrated in Lecture 12. Be careful; these are definitely not

the same as in ordinary Python, restricting or disallowing many expressions. Most of the
things missing from the table are handled by the rules for calls

There is a notable complication in applying the type rules. Consider an expression such
as x.y. Until we know the type of x, we cannot determine which method or instance variable
to use for y, and therefore we don’t know which type to use for it.

The solution is to use an iterative process to resolve types.

1. First, determine the declarations attached to all “outer” instances of identifiers (identi-
fiers that don’t occur immediately after a ’.’).

2. Assign a fresh type variable as the type of each variable, parameter, and def’ed name
indicating that as far as we know initially, its type could be anything.

3. On each statement at the outer level of the program (including each def and class,
repeatedly

a. Perform type inference (see Lecture 12). If an identifier I is defined by a def and
all type processing for I and its enclosing defs and classes (if any) is complete,
then T has all type variables replaced by fresh ones. This same rule applies to the
variable None. But in all other cases, the declared type T is used without change.
As a result, the sequence

x = 3

x = "foo"

is an error.

b. Find all qualified subexpressions, E.x, for which E’s type is now known to be a
specific class, and resolve x.

until step b yields no further change. At this point, any remaining unresolved identifiers
to the right of ‘.’ are errors.

Project #2 11

Name Construct Type Conditions

Lists [] list($a)
[E1, E2, . . .] list($a) Ei: $a, for all i

Tuples (E1, E2, . . . , En) tuplen Ei : Ti, for all 1 ≤ i ≤ n,
(T1, . . . , Tn) where 0 ≤ n ≤ 3.

Strings ”. . . ”, r”. . . ”, ... str

Logical E1 and E2 $a E1: $a, E2: $a
E1 or E2 $a E1: $a, E2: $a

Call E0(E1, . . . , En) $a E0:($a1,. . . ,$an)->$a, E1:$a1,. . . ,En:$an.

Call1 init (E1,. . . ,En) $a1 init : ($a1,. . . ,$an)->$b
, E1:$a1,. . . ,En:$an. This is used only by the
special call1 node described in §4.

Allocate C() C where C is a class (this is the new node de-
scribed in §4.)

Identifier I T T is the declared type of I. See §8 for details.

Assignment L = R $a L: $a, R: $a.

For for T in E: . . . — E: $a, T : $b, where $a is one of list($b),
range, or str and:
$a is list($b)
or $a is range and $b is int
or $a and $b are str.

Control while C: . . . — C: $a
if C: . . . — C: $a
elif C: . . . — C: $a
E1 if C else E2 $b C: $a, E1: $b, E2: $b
return E — E: T , where T is the enclosing function’s re-

turn type.

Print print E1, . . . , En[,] — Ei: $ai, 1 ≤ i ≤ n.
print >> F , — F : file, Ei: $ai, 1 ≤ i ≤ n.

E1, . . . , En[,]

Typed ids x::T T x: T

Figure 1: Type rules for the subset, part I. In general, type variables $a, $b, etc., refer to fresh type

variables for each instance of the construct. Type rules for other operators (see §4.7 and Table 2) fall out from

the rules for calls.

Project #2 12

9 The standard prelude

The term standard prelude refers to the definitions of all built-in names in a language. In
our case, these can be described by a set of ordinary declarations in our Python dialect,
and handled with (mostly) the same rules (I say “mostly” because some built-in types have
special significance in the language; type str, for example, is the type of string literals.)
Your program will, in effect, prepend a standard prelude that we supply to the rest of your
program. If you use your own code, you’ll need a little more logic in the lexer to handle this,
but it really helps avoid a lot of tedious code setting up predefined names.

10 Running the program

For this project, the command line looks like one of these (square brackets indicate optional
arguments):

./apyc --phase=2 -o OUTFILE FILE.py

./apyc --phase=2 FILE.py

The command lines from project 1 should still do the same thing. That is, phase=1 should
just parse your program and not do semantic analysis. The -o switch indicates the output
file. By default (the second form), the output files are FILEi.dast (“.dast” for “decorated
AST”).

11 What to turn in

The directory you turn in (under the name proj2-n in your tags directory) should contain
a file Makefile that is set up so that

gmake

(the default target) compiles your program,

gmake check

runs all your tests against your program, and finally,

gmake APYC=PROG check

runs all your tests against the program PROG (by default, in other words, PROG is your
program, ./apyc). Finally,

gmake clean

should remove all files that are regeneratable or unnecessary. We’ll put a sample Makefile
in the staff proj2 repository directory and in the file ~cs164/hw/proj2 directory; feel free to
modify at will as long as these commands continue to work.

Project #2 13

12 Assorted Advice

What, you haven’t started yet? First, review the Python language, and start writing and
revising test cases. You get points for thorough testing and documentation, and it should not
be difficult to get them, so don’t put this off to the last minute!

Again, be sure to ask us for advice rather than spend your own time getting frustrated
over an impasse. By now, you should have your partners’ phone numbers at least. Keep in
regular contact.

Be sure you understand what we provide. The skeleton classes actually do quite a bit for
you. Make sure you don’t reinvent the wheel.

Do not feel obliged to cram all the checks that are called for here into one method! Keep
separate checks in separate methods. To the extent possible, introduce and test them one at
a time. In fact, this project is structured in such a way that you can break it down into a set
of small problems, each implemented by a few methods that traverse the ASTs.

Keep your program neat at all times. Keep the formatting of your code correct at all
times, and when you remove code, remove it; don’t just comment it out. It’s much easier to
debug a readable program. Afraid that if you chop out code, you’ll lose it and not be able to
go back? That’s what Subversion is for. Archive each new version when you get it to compile
(or whenever you take a break, for that matter). This will allow you to go back to earlier
versions at will.

Write comments for classes and functions before you write bodies, if only to clarify your
intent in your own mind. Keep comments up to date with changes. Remember that the idea
is that one should be able to figure how to use a function from its comment, without needing
to look at its body.

You still haven’t started?

	Summary
	Input and Output
	Output Format
	Rewriting
	Identifying types
	__init__
	Allocators
	Attributes of classes
	Methods
	None
	Operators

	Overloading
	Types
	Type representation

	Various Restrictions
	Type Rules
	The standard prelude
	Running the program
	What to turn in
	Assorted Advice

