Lecture 11: Types¹

Administrivia

• Reminder: Test #1 in class on Thursday, 10 Oct.

Type Checking Phase

- Determines the type of each expression in the program, (each node in the AST that corresponds to an expression)
- Finds type errors.
 - Examples?
- The type rules of a language define each expression's type and the types required of all expressions and subexpressions.

Types and Type Systems

- A type is a set of *values* together with a set of *operations* on those values.
- E.g., fields and methods of a Java class are meant to correspond to values and operations.
- A language's type system specifies which operations are valid for which types.
- Goal of type checking is to ensure that operations are used with the correct types, enforcing intended interpretation of values.
- Notion of "correctness" often depends on what programmer has in mind, rather than what the representation would allow.
- Most operations are legal only for values of some types
 - Doesn't make sense to add a function pointer and an integer in C
 - It does make sense to add two integers
 - But both have the same assembly language implementation:

movl y, %eax; addl x, %eax

Uses of Types

- Detect errors:
 - Memory errors, such as attempting to use an integer as a pointer.
 - Violations of abstraction boundaries, such as using a private field from outside a class.
- Help compilation:
 - When Python sees x+y, its type systems tells it almost nothing about types of x and y, so code must be general.
 - In C, C++, Java, code sequences for x+y are smaller and faster, because representations are known.

Review: Dynamic vs. Static Types

- A dynamic type attaches to an object reference or other value. It's a run-time notion, applicable to any language.
- The *static type* of an expression or variable is a constraint on the possible dynamic types of its value, enforced at compile time.
- Language is *statically typed* if it enforces a "significant" set of static type constraints.
 - A matter of degree: assembly language might enforce constraint that "all registers contain 32-bit words," but since this allows just about any operation, not considered static typing.
 - C sort of has static typing, but rather easy to evade in practice.
 - Java's enforcement is pretty strict.
- In early type systems, $dynamic_type(\mathcal{E}) = static_type(\mathcal{E})$ for all expressions \mathcal{E} , so that in all executions, \mathcal{E} evaluates to exactly type of value deduced by the compiler.
- Gets more complex in advanced type systems.

Subtyping

• Define a relation $X \leq Y$ on classes to say that:

An object (value) of type X could be used when one of type Y is acceptable

- or equivalently
 - \boldsymbol{X} conforms to \boldsymbol{Y}
- In Java this means that X extends Y.
- Properties:
 - $X \preceq X$
 - $X \preceq Y$ if X inherits from Y.
 - $X \preceq Z$ if $X \preceq Y$ and $Y \preceq Z$.

Example

Variables, with static type A can hold values with dynamic type $\leq A$, or in general...

Type Soundness

Soundness Theorem on Expressions.

 $\forall E. \text{ dynamic_type}(E) \preceq \text{static_type}(E)$

- Compiler uses static_type(E) (call this type C).
- All operations that are valid on C are also valid on values with types $\leq C$ (e.g., attribute (field) accesses, method calls).
- Subclasses only add attributes.
- Methods may be overridden, but only with same (or compatible) signature.

Typing Options

- Statically typed: almost all type checking occurs at compilation time (C, Java). Static type system is typically rich.
- Dynamically typed: almost all type checking occurs at program execution (Scheme, Python, Javascript, Ruby). Static type system can be trivial.
- Untyped: no type checking. What we might think of as type errors show up either as weird results or as various runtime exceptions.

"Type Wars"

- Dynamic typing proponents say:
 - Static type systems are restrictive; can require more work to do reasonable things.
 - Rapid prototyping easier in a dynamic type system.
 - Use duck typing: define types of things by what operations they respond to ("if it walks like a duck and quacks like a duck, it's a duck").
- Static typing proponents say:
 - Static checking catches many programming errors at compile time.
 - Avoids overhead of runtime type checks.
 - Use various devices to recover the flexibility lost by "going static:" *subtyping, coercions,* and *type parameterization.*
 - Of course, each such wrinkle introduces its own complications.

Using Subtypes

- In languages such as Java, can define types (classes) either to
 - Implement a type, or
 - Define the operations on a family of types without (completely) implementing them.
- Hence, relaxes static typing a bit: we may know that something is a y without knowing precisely which subtype it has.

Implicit Coercions

• In Java, can write

```
int x = 'c';
float y = x;
```

- But relationship between **char** and **int**, or **int** and **float** not usually called subtyping, but rather *conversion* (or *coercion*).
- Such implicit coercions avoid cumbersome casting operations.
- Might cause a change of value or representation,
- But usually, such coercions allowed implicitly only if type coerced to contains all the values of the type coerced from (a *widening coercion*).
- Inverses of widening coercions, which typically lose information (e.g., int→char), are known as *narrowing coercions*. and typically required to be explicit.
- int→float a traditional exception (implicit, but can lose information and is neither a strict widening nor a strict narrowing.)

Coercion Examples

Object x = ...; String y = ...; int a = ...; short b = 42; x = y; a = b; // OK y = x; b = a; // ERRORS{ x = (Object) y; // {OK a = (int) b; // OK y = (String) x; // OK but may cause exception b = (short) a; // OK but may lose information

Possibility of implicit coercion complicates type-matching rules (see C++).

Type Inference

- Types of expressions and parameters need not be explicit to have static typing. With the right rules, might *infer* their types.
- The appropriate formalism for type checking is logical rules of inference having the form

If Hypothesis is true, then Conclusion is true

• For type checking, this might become rules like

If E_1 and E_2 have types T_1 and T_2 , then E_3 has type T_3 .

• The standard notation used in scholarly work looks like this:

 $\frac{\Gamma \vdash E_1 : T_1, \quad \Gamma \vdash E_2 : T_2}{\Gamma \vdash E_3 : T_3}$

Here, Γ stands for some set of assumptions about the types of free names, generically known as a type environment and $A \vdash B$ means "from A we may infer that B" or "A entails B."

- Given proper notation, easy to read (with practice), so easy to check that the rules are accurate.
- Can even be mechanically translated into programs.

Prolog: A Declarative Programming Language

- Prolog is the most well-known *logic programming language*.
- Its statements "declare" facts about the desired solution to a problem. The system then figures out the solution from these facts.
- You saw this in CS61A.
- General form:

```
Conclusion :- Hypothesis<sub>1</sub>, ..., Hypothesis<sub>k</sub>.
```

for $k \ge 0$ means Means "may infer Conclusion by first establishing each Hypothesis." (when k = 0, we generally leave off the ':-').

Prolog: Terms

- Each conclusion and hypothesis is a kind of *term*, represent both programs and data. A term is:
 - A constant, such as a, foo, bar12, =, +, '(', 12, 'Foo'.
 - A variable, denoted by an unquoted symbol that starts with a capital letter or underscore: E, Type, _foo.
 - The nameless variable (_) stands for a different variable each time it occurs.
 - A structure, denoted in prefix form: symbol(term₁, ..., term_k).
 Very general: can represent ASTs, expressions, lists, facts.
- Constants and structures can also represent conclusions and hypotheses, just as some list structures in Scheme can represent programs.

Prolog Sugaring

- For convenience, allows structures written in infix notation, such as a + X rather than +(a,X).
- List structures also have special notation:
 - Can write as .(a,.(b,.(c,[]))) or .(a,.(b,.(c,X)))
 - But more commonly use [a, b, c] or [a, b, c | X].

Inference Databases

- Can now express ground facts, such as likes(brian, potstickers).
- Universally quantified facts, such as eats(brian, X).

(for all X, brian eats X).

• Rules of inference, such as

eats(brian, X) :- isfood(X), likes(brian, X).

(you may infer that brian eats X if you can establish that X is a food and brian likes it.)

• A collection (database) of these constitutes a Prolog program.

Examples: From English to an Inference Rule

- "If e1 has type int and e2 has type int, then e1+e2 has type int:" typeof(E1 + E2, int) :- typeof(E1, int), typeof(E2, int).
- "All integer literals have type int:"

typeof(X, int) :- integer(X).

(integer is a built-in predicate on terms).

• In general, our typeof predicate will take an AST and a type as arguments.

Soundness

- We'll say that our definition of typeof is sound if
 - Whenever rules show that typeof(e,t), e always evaluates to a value of type t
- We only want sound rules,
- But some sound rules are better than others; here's one that's not very useful:

```
typeof(X,any) :- integer(X).
```

Instead, would be better to be more general, as in

typeof(X,any).

(that is, any expression X is an any.)

Example: A Few Rules for Java (Classic Notation)

$\vdash X$: boolean	$\vdash E$: boolean $\vdash S$: void
$\vdash !X : boolean$	\vdash while (E,S) : void
$\vdash X:T$	$\vdash E_1: int \qquad \vdash E_2: int$
$\vdash X:void$	$\vdash E_1 + E2: int$

Example: A Few Rules for Java (Prolog)

- typeof(! X, boolean) :- typeof(X, boolean).
- typeof(while(E, S), void) :- typeof(E, boolean), typeof(S, void).
- typeof(X,void) :- typeof(X,Y)

The Environment

- What is the type of a variable instance? E.g., how do you show that typeof(x, int)?
- Ans: You can't, in general, without more information.
- We need a hypothesis of the form "we are in the scope of a declaration of x with type T.")
- A type environment gives types for free names:
- a mapping from identifiers to types.
- (A variable is *free* in an expression if the expression contains an occurrence of the identifier that refers to a declaration outside the expression.
 - In the expression \mathbf{x} , the variable \mathbf{x} is free
 - In lambda x: x + y only y is free (Python).
 - In map(lambda x: g(x,y), x), x, y, map, and g are free.

Defining the Environment in Prolog

- Can define a predicate, say, defn(I,T,E), to mean "I is defined to have type T in environment E."
- We can implement such a defn in Prolog like this:

```
defn(I, T, [def(I,T) | _]).
defn(I, T, [def(I1,_)|R]) :- dif(I,I1), defn(I,T,R).
```

(dif is built-in, and means that its arguments differ).

Now we revise typeof to have a 3-argument predicate: typeof(E, T, Env) means "E is of type T in environment Env," allowing us to say typeof(I, T, Env) :- defn(I, T, Env).

Examples Revisited (Classic)

$\Gamma \vdash E$: boolean $\Gamma \vdash S$: void
$\Gamma \vdash while(E,S) : void$
$\frac{\Gamma \vdash E_1 : int \qquad \Gamma \vdash E_2 : int}{\Gamma \vdash E_1 + E2 : int}$

(where I is an integer literal and Γ is a type environment)

Examples Revisited (Prolog)

Example: lambda (Python)

typeof(lambda(X,E1), any->T, Env) : typeof(E1,T, [def(X,any) | Env]).

In effect, [def(X,any) | Env] means "Env modified to map x to any and behaving like Env on all other arguments."

Example: Same Idea for 'let' in the Cool Language

- Cool is an object-oriented language sometimes used for the project in this course.
- The statement let x : TO in e1 creates a variable x with given type TO that is then defined throughout e1. Value is that of e1.
- Rule (assuming that "let(X,TO,E1)" is the AST for let):

```
typeof(let(X,T0,E1), T1, Env) :-
    typeof(E1, T1, [def(X, T0)|Env]).
```

"type of let X: TO in E1 is T1, assuming that the type of E1 would be T1 if free instances of X were defined to have type TO".

Example of a Rule That's Too Conservative

• Let with initialization (also from Cool):

let $x : T0 \leftarrow e0$ in e1

• What's wrong with this rule?

```
typeof(let(X, T0, E0, E1), T1, Env) :-
    typeof(E0, T0, Env),
    typeof(E1, T1, [def(X, T0) | Env]).
```

(Hint: I said Cool was an object-oriented language).

Loosening the Rule

- Problem is that we haven't allowed type of initializer to be subtype of TO.
- Here's how to do that:

```
typeof(let(X, T0, E0, E1), T1, Env) :-
    typeof(E0, T2, Env), T2 <= T0,
    typeof(E1, T1, [def(X, T0) | Env]).</pre>
```

• Still have to define subtyping (written here as <=), but that depends on other details of the language.

As Usual, Can Always Screw It Up

typeof(let(X, T0, E0, E1), T1, Env) : typeof(E0, T2, Env), T2 <= T0,
 typeof(E1, T1, Env).</pre>

This allows incorrect programs and disallows legal ones. Examples?

Function Application

- Consider only the one-argument case (Java).
- AST uses 'call', with function and list of argument types.

```
typeof(call(E1,[E2]), T, Env) :-
    typeof(E1, T1->T, Env), typeof(E2, T1a, Env),
    T1a <= T1.</pre>
```

Conditional Expressions

• Consider:

e1 if e0 else e2

or (from C) e0? e1: e2.

- The result can be value of either e1 or e2.
- The dynamic type is either el's or e2's.
- Either constrain these to be equal (as in ML):

```
typeof(if(E0,E1,E2), T, Env) :-
    typeof(E0,bool,Env), typeof(E1,T,Env), typeof(E2,T,Env).
```

• Or use the *smallest supertype* at least as large as both of these types—the *least upper bound (lub)* (as in Cool):

```
typeof(if(E0,E1,E2), T, Env) :-
   typeof(E0,bool,Env), typeof(E1,T1,Env), typeof(E2,T2,Env),
   lub(T,T1,T2).
```