
Lecture #12: Type Inference and Unification

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 1

Typing In the Language ML

• Examples from the language ML:

fun map f [] = []

| map f (a :: y) = (f a) :: (map f y)

fun reduce f init [] = init

| reduce f init (a :: y) = reduce f (f init a) y

fun count [] = 0

| count (:: y) = 1 + count y

fun addt [] = 0

addt ((a, ,c) :: y) = (a+c) :: addt y

• Despite lack of explicit types here, this language is statically typed!

• Compiler will reject the calls map 3 [1, 2] and reduce (op +) []

[3, 4, 5].

• Does this by deducing types from their uses.

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 2

Type Inference

• In simple case:

fun add [] = 0

| add (a :: L) = a + add L

compiler deduces that add has type int list → int.

• Uses facts that (a) 0 is an int, (b) [] and a::L are lists (:: is cons),
(c) + yields int.

• More interesting case:

fun count [] = 0

| count (:: y) = 1 + count y

(means “don’t care” or “wildcard”). In this case, compiler deduces
that count has type α list → int.

• Here, α is a type parameter (we say that count is polymorphic).

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 3

Doing Type Inference

• Given a definition such as

fun add [] = 0

| add (a :: L) = a + add L

• First give each named entity here an unbound type parameter as its
type: add : α, a : β, L : γ.

• Now use the type rules of the language to give types to everything
and to relate the types:

– 0: int, []: δ list.

– Since add is function and applies to int, must be that α = ι → κ,
and ι = δ list

– etc.

• Gives us a large set of type equations, which can be solved to give
types.

• Solving involves pattern matching, known formally as type unifica-
tion.

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 4

Type Expressions

• For this lecture, a type expression can be

– A primitive type (int, bool);

– A type variable (today we’ll use ML notation: ’a, ’b, ‘c1, etc.);

– The type constructor T list, where T is a type expression;

– A function type D → C, where D and C are type expressions.

• Will formulate our problems as systems of type equations between
pairs of type expressions.

• Need to find the substitution

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 5

Solving Simple Type Equations

• Simple example: solve

’a list = int list

• Easy: ’a = int.

• How about this:

’a list = ’b list list; ’b list = int list

• Also easy: ’a = int list; ’b = int.

• On the other hand:

’a list = ’b → ’b

is unsolvable: lists are not functions.

• Also, if we require finite solutions, then

’a = ’b list; ’b = ’a list

is unsolvable. However, our algorithm will allow infinite solutions.

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 6

Most General Solutions

• Rather trickier:

’a list= ’b list list

• Clearly, there are lots of solutions to this: e.g,

’a = int list; ’b = int

’a = (int → int) list; ’b = int → int

etc.

• But prefer a most general solution that will be compatible with any
possible solution.

• Any substitution for ’a must be some kind of list, and ’b must be
the type of element in ’a, but otherwise, no constraints

• Leads to solution

’a = ’b list

where ’b remains a free type variable.

• In general, our solutions look like a bunch of equations ’ai = Ti,
where the Ti are type expressions and none of the ’ai appear in any
of the T ’s.

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 7

Finding Most-General Solution by Unification

• To unify two type expressions is to find substitutions for all type
variables that make the expressions identical.

• The set of substitutions is called a unifier.

• Represent substitutions by giving each type variable, ’τ , a binding
to some type expression.

• The algorithm that follows treats type expressions as objects (so
two type expressions may have identical content and still be differ-
ent objects). All type variables with the same name are represented
by the same object.

• It generalizes binding by allowing all type expressions (not just type
variables) to be bound to other type expressions

• Initially, each type expression object is unbound.

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 8

Unification Algorithm

• For any type expression, define

binding(T) =

binding(T ′), if T is bound to type expression T ′

T, otherwise

• Now proceed recursively:

unify (TA,TB):

TA = binding(TA); TB = binding(TB);
if TA is TB: return True; # True if TA and TB are the same object
if TA is a type variable:

bind TA to TB; return True

bind TB to TA; # Prevents infinite recursion
if TB is a type variable:

return True

Now check that binding TB to TA was really OK.
if TA is C(TA1,TA2,...,TAn) and TB is C(TB1,...,TBn):

return unify(TA1,TB1) and unify(TA2,TB2 and ...

where C is some type constructor

else: return False

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 9

Example of Unification I

• Try to solve A = B, where

A = ’a → int; B = ’b list→ ’b

by computing unify(A,B).

→

’a int

→

list

’b

Dashed arrows are bindings
Red items are current TA and TB

So ’a = int list and ’b = int.

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 10

Example of Unification II

• Try to solve A = B, where

A = ’a → ’c list; B = ’b → ’a

by computing unify(A,B).

→

’a list

’c

→

’b (to ’a)

So ’a = ’b = ’c list and ’c is free.

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 11

Example of Unification III: Simple Recursive Type

• Introduce a new type constructor: (’h,’t) pair, which is intended
to model typed Lisp cons-cells (or nil). The car of such a pair has
type ’h, and the cdr has type ’t.

• Try to solve A = B, where

A = ’a; B = (’b, ’a) pair

by computing unify(A,B).

• This one is very easy:

’a pair

’b

So ’a = (’b, ’a) pair; ’b is free.

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 12

Example of Unification IV: Another Recursive Type

• This time, consider solving A = B, C = D, A = C, where

A = ’a; B = (’b, ’a) pair; C = ’c; D = (’d, (’d, ’c) pair) pair.

We just did the first one, and the second is almost the same, so
we’ll just skip those steps.

’a pair

’b

’c pair

’d pair

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 13

Example of Unification IV: Another Recursive Type

• This time, consider solving A = B, C = D, A = C, where

A = ’a; B = (’b, ’a) pair; C = ’c; D = (’d, (’d, ’c) pair) pair.

We just did the first one, and the second is almost the same, so
we’ll just skip those steps.

’a pair

’b

’c pair

’d pair

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 13

Example of Unification IV: Another Recursive Type

• This time, consider solving A = B, C = D, A = C, where

A = ’a; B = (’b, ’a) pair; C = ’c; D = (’d, (’d, ’c) pair) pair.

We just did the first one, and the second is almost the same, so
we’ll just skip those steps.

’a pair

’b

’c pair

’d pair

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 13

Example of Unification IV: Another Recursive Type

• This time, consider solving A = B, C = D, A = C, where

A = ’a; B = (’b, ’a) pair; C = ’c; D = (’d, (’d, ’c) pair) pair.

We just did the first one, and the second is almost the same, so
we’ll just skip those steps.

’a pair

’b

’c pair

’d pair

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 13

Example of Unification IV: Another Recursive Type

• This time, consider solving A = B, C = D, A = C, where

A = ’a; B = (’b, ’a) pair; C = ’c; D = (’d, (’d, ’c) pair) pair.

We just did the first one, and the second is almost the same, so
we’ll just skip those steps.

’a pair

’b

’c pair

’d pair

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 13

Example of Unification IV: Another Recursive Type

• This time, consider solving A = B, C = D, A = C, where

A = ’a; B = (’b, ’a) pair; C = ’c; D = (’d, (’d, ’c) pair) pair.

We just did the first one, and the second is almost the same, so
we’ll just skip those steps.

’a pair

’b

’c pair

’d pair

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 13

Example of Unification IV: Another Recursive Type

• This time, consider solving A = B, C = D, A = C, where

A = ’a; B = (’b, ’a) pair; C = ’c; D = (’d, (’d, ’c) pair) pair.

We just did the first one, and the second is almost the same, so
we’ll just skip those steps.

’a pair

’b

’c pair

’d pair

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 13

Example of Unification IV: Another Recursive Type

• This time, consider solving A = B, C = D, A = C, where

A = ’a; B = (’b, ’a) pair; C = ’c; D = (’d, (’d, ’c) pair) pair.

We just did the first one, and the second is almost the same, so
we’ll just skip those steps.

’a pair

’b

’c pair

’d pair

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 13

Example of Unification IV: Another Recursive Type

• This time, consider solving A = B, C = D, A = C, where

A = ’a; B = (’b, ’a) pair; C = ’c; D = (’d, (’d, ’c) pair) pair.

We just did the first one, and the second is almost the same, so
we’ll just skip those steps.

’a pair

’b

’c pair

’d pair

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 13

Example of Unification IV: Another Recursive Type

• This time, consider solving A = B, C = D, A = C, where

A = ’a; B = (’b, ’a) pair; C = ’c; D = (’d, (’d, ’c) pair) pair.

We just did the first one, and the second is almost the same, so
we’ll just skip those steps.

’a pair

’b

’c pair

’d pair

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 13

Example of Unification IV: Another Recursive Type

• This time, consider solving A = B, C = D, A = C, where

A = ’a; B = (’b, ’a) pair; C = ’c; D = (’d, (’d, ’c) pair) pair.

We just did the first one, and the second is almost the same, so
we’ll just skip those steps.

’a pair

’b

’c pair

’d pair

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 13

Example of Unification IV: Another Recursive Type

• This time, consider solving A = B, C = D, A = C, where

A = ’a; B = (’b, ’a) pair; C = ’c; D = (’d, (’d, ’c) pair) pair.

We just did the first one, and the second is almost the same, so
we’ll just skip those steps.

’a pair

’b

’c pair

’d pair

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 13

Example of Unification IV: Another Recursive Type

• This time, consider solving A = B, C = D, A = C, where

A = ’a; B = (’b, ’a) pair; C = ’c; D = (’d, (’d, ’c) pair) pair.

We just did the first one, and the second is almost the same, so
we’ll just skip those steps.

’a pair

’b

’c pair

’d pair

So ’a = ’c = (’d, ’a) pair; ’b=’d; ’d is free.

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 13

Example of Unification V

• Try to solve

’b list= ’a list; ’a→ ’b = ’c;
’c → bool= (bool→ bool) → bool

• We unify both sides of each equation (in any order), keeping the
bindings from one unification to the next.

’a: bool

’b: ’a

bool

’c: ’a → ’b

bool → bool

Unify ’b list, ’a list:

Unify ’b, ’a

Unify ’a→ ’b, ’c

Unify ’c → bool, (bool → bool) → bool

Unify ’c, bool → bool:

Unify ’a → ’b, bool → bool:

Unify ’a, bool

Unify ’b, bool:

Unify bool, bool

Unify bool, bool

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 14

Some Type Rules (reprise)

Construct Type Conditions
Integer literal int

[] ’a list

hd (L) ’a L: ’a list
tl (L) ’a list L: ’a list
E1+E2 int E1: int, E2: int
E1::E2 ’a list E1: ’a, E2: ’a list
E1 = E2 bool E1: ’a, E2: ’a
E1!=E2 bool E1: ’a, E2: ’a
if E1 then E2 else E3 fi ’a E1: bool, E2: ’a, E3: ’a
E1 E2 ’b E1: ’a → ’b, E2: ’a
def f x1 ...xn = E x1: ’a1, . . . , xn: ’an E:’a0,

f: ’a1 → . . .→ ’an → ’a0.

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 15

Using the Type Rules

• Interpret the notation E : T , where E is an expression and T is a
type, as

type(E) = T

• Seed the process by introducing a set of fresh type variables to
describe the types of all the variables used in the program you are
attempting to process. For example, given

def f x = x

we might start by saying that

type(f) = ’a0, type(x) = ’a1

• Apply the type rules to your program to get a bunch of Conditions.

• Whenever two Conditions ascribe a type to the same expression,
equate those types.

• Solve the resulting equations.

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 16

Aside: Currying

• Writing

def sqr x = x*x;

means essentially that sqr is defined to have the value λ x. x*x.

• To get more than one argument, write

def f x y = x + y;

and f will have the value λ x. λ y. x+y

• Its type will be int → int → int (Note: → is right associative).

• So, f 2 3 = (f 2) 3 = (λ y. 2 + y) (3) = 5

• Zounds! It’s the CS61A substitution model!

• This trick of turning multi-argument functions into one-argument
functions is called currying (after Haskell Curry).

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 17

Example

if p L then init else f init (hd L) fi + 3

• Let’s initially use ’p, ’L, etc. as the fresh type variables giving the
types of identifiers.

• Using the rules then generates equations like this:

’p = ’a0→ ’a1, ’L = ’a0, type(p L) = ’a1 # call rule

’L = ’a2 list, type(hd L) = ’a2 # hd rule

’f = ’a3→ ’a4, ’init = ’a3, type(f init) = ’a4

call rule

’a4 = ’a5→ ’a6, ’a2 = ’a5, type(f init (hd L)) = ’a6

call rule

’a1 = bool, ’init = ’a7, ’a6 = ’a7, type(if... fi) = ’a7

if rule

’a7 = int, int = int, type(if... fi+3) = int # + rule

etc.

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 18

Example, contd.

Solve all these equations by sequentially unifying the two sides of each
equation, in any order, keeping the bindings as you go.

’p = ’a0→ ’a1, ’L = ’a0

’L = ’a2 list

’a0 = ’a2 list

’f = ’a3→ ’a4, ’init = ’a3

’a4 = ’a5→ ’a6, ’a2 = ’a5

’a1 = bool, ’init = ’a7, ’a6 = ’a7

’a3 = ’a7

’a7 = int, int = int

So (eventually),

’p = ’a5 list→ bool, ’L = ’a5 list, ’init = int,

’f = int → ’a5→ int

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 19

Introducing Fresh Variables

• The type rules for the simple language we’ve been using generally
call for introducing fresh type variables for each application of the
rule.

• Example: in the expression

if x = [] then [] else x::y fi

the two [] are treated as having two different types, say ’a0 list

and ’a1 list, which is a good thing, because otherwise, this expres-
sion cannot be made to type-check [why?].

• You’d probably want to do the same with count:

fun count [] = 0

| count (:: y) = 1 + count y

Analyzing this gives a type of ’a list→ int. Suppose we have two
calls later in the program: count (0::x) and count ([1]::y).

• Obviously, we also want to replace ’a in each case with a fresh type
variable, since otherwise, count would be specialized to work only on
lists of integers or only on lists of lists.

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 20

. . . Or not?

• But we don’t want to introduce a fresh type variable for each call
when inferring the type of a function from its definition:

fun switcher x y z = if x=0 then y else switcher(x-1,z, y) fi

• Here, we want the type of switcher to come out to be int→ ’y→ ’y→ ’y,
but that can’t happen if the recursive call to switcher can take ar-
gument types that are independent of those of y and z.

• Same problem with a set of mutually recursive definitions.

• So our language must always state which groups of definitions get
resolved together, and when calling a function is supposed to create
a fresh set of type variables instead.

Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 21

	Lecture #12: Type Inference and Unification
	Typing In the Language ML
	Type Inference
	Doing Type Inference
	Type Expressions
	Solving Simple Type Equations
	Most General Solutions
	Finding Most-General Solution by Unification
	Unification Algorithm
	Example of Unification I
	Example of Unification II
	Example of Unification III: Simple Recursive Type
	Example of Unification IV: Another Recursive Type
	Example of Unification V
	Some Type Rules (reprise)
	Using the Type Rules
	Aside: Currying
	Example
	Example, contd.
	Introducing Fresh Variables
	…Or not?

