Lecture #12: Type Inference and Unific	ation Typing In the Language ML
	• Examples from the language ML:
	<pre>fun map f [] = [] map f (a :: y) = (f a) :: (map f y) fun reduce f init [] = init reduce f init (a :: y) = reduce f (f init a) y fun count [] = 0 count (_ :: y) = 1 + count y fun addt [] = 0 addt ((a,_,c) :: y) = (a+c) :: addt y</pre>
	 Despite lack of explicit types here, this language is statically typed!
	• Compiler will reject the calls map 3 [1, 2] and reduce (op +) [] [3, 4, 5].
	 Does this by deducing types from their uses.
Last modified: Mon Oct 8 10:17:30 2012 0	CS164: Lecture #12 1 Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 2
Type Inference	Doing Type Inference
• In simple case:	 Given a definition such as
fun add [] = 0 add (a :: L) = a + add L	fun add [] = 0 add (a :: L) = a + add L
compiler deduces that add has type int list \rightarrow int.	• First give each named entity here an unbound type parameter as its
 Uses facts that (a) 0 is an int, (b) [] and a::L are lists (c) + yields int. 	 (:: is cons), Now use the type rules of the language to give types to everything
 More interesting case: 	and to <i>relate</i> the types:
fun count [] - 0	$-0: \text{ int, } []: \delta \text{ list.}$
$ \text{ count } (_ :: y) = 1 + \text{ count } y$	- Since add is function and applies to int, must be that $\alpha = \iota \rightarrow \kappa$, and $\iota = \delta$ list
(means "don't care" or "wildcard") In this case, comp	iler deduces
that count has type α list \rightarrow int.	Gives us a large set of type equations, which can be solved to give types.
$ullet$ Here, $lpha$ is a type parameter (we say that ${\tt count}$ is polyn	norphic).

Type Expressions	Solving Simple Type Equations					
 For this lecture, a type expression can be 	• Simple example: solve					
- A primitive type (int, bool);	'a list = int list					
 A type variable (today we'll use ML notation: 'a, 'b, 'c₁, etc.); 	 Easy: 'a = int. How about this: 					
- The type constructor T list, where T is a type expression;						
- A function type $D \rightarrow C$, where D and C are type expressions.	 'a list = 'b list list; 'b list = int list Also easy: 'a = int list; 'b = int. On the other hand: 'a list = 'b → 'b is unsolvable: lists are not functions. 					
 Will formulate our problems as systems of type equations between pairs of type expressions 						
• Need to find the substitution						
	 Also, if we require <i>finite</i> solutions, then 					
	'a = 'b list; 'b = 'a list					
	is unsolvable. However, our algorithm will allow infinite solutions.					
Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 5	Last modified: Mon Oct 8 10:17:30 2012 CS164: Lecture #12 6					
Most General Solutions	Finding Most-General Solution by Unification					
• Rather trickier:	 To unify two type expressions is to find substitutions for all type variables that make the expressions identical. 					
 Clearly, there are lots of solutions to this: e.g, 'a = int list; 'b = int 'a = (int -, int) list; 'b = int -, int 	• The set of substitutions is called a <i>unifier</i> .					
	• Represent substitutions by giving each type variable, ' τ , a binding to some type expression.					
etc.	• The algorithm that follows treats type expressions as objects (so					
 But prefer a most general solution that will be compatible with any possible solution. 	two type expressions may have identical content and still be differ- ent objects). All type variables with the same name are represented by the same object.					
 Any substitution for 'a must be some kind of list, and 'b must be the type of element in 'a, but otherwise, no constraints 	 It generalizes binding by allowing all type expressions (not just type variables) to be bound to other type expressions Initially, each type expression object is unbound 					
 Leads to solution 						
'a = 'blist						
where 'b remains a free type variable.						
• In general, our solutions look like a bunch of equations ' $a_i = T_i$, where the T_i are type expressions and none of the ' a_i appear in any of the T 's.						

Unification Algorithm

• For any type expression, define

 $\mathsf{binding}(T) = \begin{cases} \operatorname{binding}(T'), \text{ if } T \text{ is bound to type expression } T' \\ T, & \mathsf{otherwise} \end{cases}$

• Now proceed recursively:

unify (TA,TB): TA = binding(TA); TB = binding(TB); if TA is TB: return True; # True if TA and TB are the same object if TA is a type variable: bind TA to TB; return True bind TB to TA; # Prevents infinite recursion if TB is a type variable: return True # Now check that binding TB to TA was really OK. if TA is C(TA₁,TA₂,...,TA_n) and TB is C(TB₁,...,TB_n): return unify(TA₁,TB₁) and unify(TA₂,TB₂ and ... # where C is some type constructor else: return False

Last modified: Mon Oct 8 10:17:30 2012

Example of Unification II

• Try to solve A = B, where

$$A = a \rightarrow clist; B = b \rightarrow a$$

by computing unify(A, B).

So a = b = c list and c is free.

Example of Unification I

• Try to solve A = B, where

 $A = a \rightarrow int; B = b list \rightarrow b$

by computing unify(A, B).

Last modified: Mon Oct 8 10:17:30 2012

CS164: Lecture #12 10

Example of Unification III: Simple Recursive Type

- Introduce a new type constructor: ('h, 't) pair, which is intended to model typed Lisp cons-cells (or nil). The car of such a pair has type 'h, and the cdr has type 't.
- Try to solve A = B, where

A = 'a; B = ('b, 'a) pair

by computing unify(A, B).

• This one is very easy:

CS164: Lecture #12 9

Example of Unification IV: Another Recursive Type

• This time, consider solving A = B, C = D, A = C, where

A = 'a; B = ('b, 'a) pair; C = 'c; D = ('d, ('d, 'c) pair) pair.

We just did the first one, and the second is almost the same, so we'll just skip those steps.

Last modified:	Mon	Ort	8	10:17:30 2012
COST INVALUES.		~~	v	10.11.00 FAT

CS164: Lecture #12 13

CS164: Lecture #12 15

Some Type Rules (reprise)

Construct	Туре	Conditions
Integer literal	int	
[]	'a list	
hd (<i>L</i>)	ά	L: 'a list
† (<i>L</i>)	'a list	L: 'a list
E_1 + E_2	int	E_1 : int, E_2 : int
E_1 :: E_2	'a list	E_1 : 'a, E_2 : 'a list
$E_1 = E_2$	bool	<i>E</i> ₁ : 'a, <i>E</i> ₂ : 'a
$E_1!=E_2$	bool	E1: 'a, E2: 'a
if E_1 then E_2 else E_3 fi	ά	E_1 : bool, E_2 : 'a, E_3 : 'a
$E_1 E_2$	'b	E_1 : 'a $ ightarrow$ 'b, E_2 : 'a
def f x1 \dots xn = E		x1: ' $a_1,, xn$: ' $a_n E$:' $a_0,$
		$f \colon ' a_1 \to \ldots \to ' a_n \to ' a_0.$

Example of Unification V

• Try to solve

```
'b list= 'a list; 'a \rightarrow 'b = 'c;
'c \rightarrow bool= (bool\rightarrow bool) \rightarrow bool
```

• We unify both sides of each equation (in any order), keeping the bindings from one unification to the next.

Last modified: Mon Oct 8 10:17:30 2012

CS164: Lecture #12 14

Using the Type Rules

 \bullet Interpret the notation E:T, where E is an expression and T is a type, as

type(E) = T

• Seed the process by introducing a set of fresh type variables to describe the types of all the variables used in the program you are attempting to process. For example, given

def f x = x

we might start by saying that

type(f) = 'a0, type(x) = 'a1

- Apply the type rules to your program to get a bunch of Conditions.
- Whenever two Conditions ascribe a type to the same expression, equate those types.
- Solve the resulting equations.

Aside: Currying	Example
 Writing def sqr x = x*x; means essentially that sqr is defined to have the value λ x. x*x. To get more than one angument, write 	 if p L then init else f init (hd L) fi + 3 Let's initially use 'p, 'L, etc. as the fresh type variables giving the types of identifiers.
 To get more than one argument, write def f x y = x + y; and f will have the value λ x. λ y. x+y Its type will be int → int → int (Note: → is right associative). So, f 2 3 = (f 2) 3 = (λ y. 2 + y) (3) = 5 Zounds! It's the CS61A substitution model! This trick of turning multi-argument functions into one-argument functions is called <i>currying</i> (after Haskell Curry). 	• Using the rules then generates equations like this: 'p = 'a0 \rightarrow 'a1, 'L = 'a0, type(p L) = 'a1 # call rule 'L = 'a2 list, type(hd L) = 'a2 # hd rule 'f = 'a3 \rightarrow 'a4, 'init = 'a3, type(f init) = 'a4 # call rule 'a4 = 'a5 \rightarrow 'a6, 'a2 = 'a5, type(f init (hd L)) = 'a6 # call rule 'a1 = bool, 'init = 'a7, 'a6 = 'a7, type(if fi) = 'a7 # if rule 'a7 = int, int = int, type(if fi+3) = int # + rule etc.

Example, contd.

Solve all these equations by sequentially unifying the two sides of each equation, in any order, keeping the bindings as you go.

```
'p = 'a0→ 'a1, 'L = 'a0
'L = 'a2 list
'a0 = 'a2 list
'f = 'a3→ 'a4, 'init = 'a3
'a4 = 'a5→ 'a6, 'a2 = 'a5
'a1 = bool, 'init = 'a7, 'a6 = 'a7
'a3 = 'a7
'a7 = int, int = int
```

So (eventually),

Last modified: Mon Oct 8 10:17:30 2012

```
'p = 'a5 list\rightarrow bool, 'L = 'a5 list, 'init = int, 'f = int \rightarrow 'a5\rightarrow int
```

Introducing Fresh Variables

- The type rules for the simple language we've been using generally call for introducing fresh type variables for each application of the rule.
- Example: in the expression

Last modified: Mon Oct 8 10:17:30 2012

if x = [] then [] else x::y fi

the two [] are treated as having two different types, say 'a0 list and 'a1 list, which is a good thing, because otherwise, this expression cannot be made to type-check [why?].

• You'd probably want to do the same with count:

fun count [] = 0 | count (_ :: y) = 1 + count y

Analyzing this gives a type of 'a list \rightarrow int. Suppose we have two calls later in the program: count (0::x) and count ([1]::y).

• Obviously, we also want to replace 'a in each case with a fresh type variable, since otherwise, count would be specialized to work only on lists of integers or only on lists of lists.

CS164: Lecture #12 17

CS164: Lecture #12 18

... Or not?

• But we don't want to introduce a fresh type variable for each call when inferring the type of a function from its definition:

fun switcher x y z = if x=0 then y else switcher(x-1,z, y) fi

- Here, we want the type of switcher to come out to be $int \rightarrow 'y \rightarrow 'y \rightarrow 'y$, but that can't happen if the recursive call to switcher can take argument types that are independent of those of y and z.
- Same problem with a set of mutually recursive definitions.
- So our language must always state which groups of definitions get resolved together, and when calling a function is supposed to create a fresh set of type variables instead.

CS164: Lecture #12 21