
CS164 Programming Languages and Compilers Spring 2019

Programming Assignment 3

Assigned: Nov 3, 2020 Checkpoint: Nov 25, 2020 at 11:59pm Due: Dec 4, 2020 at 11:59pm

1 Overview

The three programming assignments in this course will direct you to develop a compiler for
ChocoPy, a statically typed dialect of Python. The assignments will cover (1) lexing and pars-
ing of ChocoPy into an abstract syntax tree (AST), (2) semantic analysis of the AST, and (3) code
generation.

For this assignment, you are to implement a RISC-V code generator for ChocoPy. This phase
of the compiler takes as input the type-annotated AST of a semantically valid and well-typed
ChocoPy program, and produces as output RISC-V assembly code. Section 5 describes the version
of RISC-V that we will be using, as well as the execution environment used for grading.

This assignment is also accompanied by the ChocoPy RISC-V implementation guide, which is
a document that describes in detail the design decisions taken by the reference compiler. Unlike
previous assignments, the starter code provided for this assignment is quite extensive. We encourage
you to make full use of this code, since it will save you about half the development effort of building
a code generator. Reading the accompanying implementation guide is essential to understanding
the provided starter code. This assignment can get a bit tedious, so start early. However,
implementing a code generator can be a very rewarding task, since you will (finally) be able to
execute ChocoPy programs and observe their behavior.

2 Getting started

The setup this is essentially the same as last time. You can use the same team repository and
working directory as you did for Project 2.

• First make sure that your current working directory is clean (that is, git status shows no
untracked files or uncommitted changes.)

• You will find a skeleton for the project in our shared repository. Let’s assume you have cloned
your team repository into a directory team-repo. Once cloned, any one of you can set things
up in the master branch with

$ cd team-repo

$ git fetch shared

$ git merge shared/proj3 -m "Start project 3 from skeleton"

$ git push

(Again, only one member should do this, or all kinds of conflicts will result). Other team
members will now be able to pull this to their own machines with

$ cd team-repo

$ git pull

1

After these steps, the code for the project will be in the proj3 subdirectory of your local working
directory. Run any of the commands referred to below in that subdirectory.

• Although these directions assume you put your project in the master branch, that isn’t really
necessary. If your team desires, for example, to keep each project in a separate branch, that
works, too (but obviously, you must all agree on the structure!). If you do this, you are responsible
for learning the proper Git procedures to accomplish it. Whatever you do, your project must be
in the subdirectory proj3 of the branch you work on, just as it is laid out in the shared/proj3

directory you merge in.

• Ensure you have Git, Apache Maven and JDK 8+ installed, as in Projects 1 and 2.

• Run mvn clean package. This will compile the starter code, which analyzes all declarations in
a ChocoPy and emits everything that is needed in the data segment, as well as a skeleton text
segment for the top-level statements. Your goal is to emit code for top-level statements as well
as for every function/method defined in the ChocoPy program.

• Run the following command to test your analysis against sample inputs and expected outputs—
only one test will pass with the starter code:

java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.ChocoPy --pass=..s \

--run --dir src/test/data/pa3/sample --test

Windows users should replace the colon between the JAR names in the classpath with a semicolon:
java -cp "chocopy-ref.jar;target/assignment.jar" This applies to all java commands
listed in this document.

3 External Documentation

• RISC-V specification: https://riscv.org/specifications

• Venus wiki: https://github.com/kvakil/venus/wiki. We are using a modified version of
Venus for this course. Section 5 describes our simulator and its differences from the original.

4 Files and directories

The assignment repository contains a number of files that provide a skeleton for the project. Some
of these files should not be modified, as they are essential for the assignment to compile correctly.
Other files must be modified in order to complete the assignment. You may also have to create
some new files in this directory structure. The list below summarizes each file or directory in the
provided skeleton. They are all under the proj3 subdirectory.

• pom.xml: The Apache Maven build configuration. You do not need to modify this as it is set
up to compile the entire pipeline. We will overwrite this file with the original pom.xml while
autograding.

2

https://riscv.org/specifications
https://github.com/kvakil/venus/wiki

• src/: The src directory contains manually editable source files, some of which you must modify
for this assignment. Classes in the chocopy.common package may not be modified, because they
are common to your assignment and the reference implementation / test framework. However,
you are free to duplicate/extend these classes in the chocopy.pa3 package or elsewhere. Section 7
describes in detail how the provided starter code is meant to be extended without requiring any
duplication.

– src/main/java/chocopy/pa3/StudentCodeGen.java: This class is the entry point to the
code generation phase of your compiler. It contains a single method: public static

String process(Program program, boolean debug). The first argument to this method
will be the typed AST produced by the semantic analyis stage, and the return value should
be the RISC-V assembly program. The second argument to this method is true if the
--debug flag is provided on the command line when invoking the compiler.

– src/main/java/chocopy/common/CodeGenBase.java: This abstract class provides a lot of
infrastructure for setting up data structures and definitions for performing code generation.
You should not need to edit this class, as it is meant to be easily extensible via subclassing.
However, reading some of the code in this class may be helpful. Section 7.1 describes this
class in detail.

– src/main/java/chocopy/pa3/CodeGenImpl.java: This class contains a skeleton imple-
mentation of the abstract class chocopy.common.CodeGenBase. You will have to modify
this file to emit assembly code for top-level statements and function bodies. Section 7
describes several support classes in detail.

– src/main/java/chocopy/common/astnodes/*.java: This package contains one class for
every AST-node kind that appears in the input JSON. These are the same classes that were
provided in previous assignments.

– src/main/java/chocopy/common/analysis/NodeAnalyzer.java: An interface contain-
ing method overloads for every node class in the AST hierarchy. This is the same class that
was provided in the previous assignment.

– src/main/java/chocopy/common/analysis/AbstractNodeAnalyzer.java: A dummy
implementation of the NodeAnlyzer interface. This is the same class that was provided
in the previous assignment.

– src/main/java/chocopy/common/analysis/SymbolTable.java: This class contains a
sample implementation of a symbol table, which is a essentially a map from strings to
values of a generic type T. This is the same class that was provided in the previous assign-
ment.

– src/main/java/chocopy/common/analysis/types/*.java: This package contains a hier-
archy of classes for representing types in the typed AST. These are the same classes that
were provided in the previous assignment.

– src/main/java/chocopy/common/codegen/*.java: These classes contain all the support
classes for the extensive starter code provided to you. Section 7 describes these classes in
detail, including how you can extend some of them.

– src/main/asm/chocopy/common/*.s: These files contain assembly-language implementa-
tions of built-in functions, which CodeGenBase copies into the output program. You can
use the same technique for adding additional runtime support routines (for things such as

3

string concatenation). Just put such routines in a directory src/main/asm/chocopy/pa3

and look to see how CodeGenBase uses the emitStdFunc routines.

– src/test/data/pa3: This directory contains ChocoPy programs for testing your code
generator.

∗ /sample/*.py - Sample test programs covering a variety of semantics that you will
need to implement in this assignment. Each sample program is designed to test a small
number of language features.

∗ /sample/*.py.out.typed - Typed ASTs corresponding to the test programs. These
will be the inputs to your code generator.

∗ /sample/*.py.out.typed.s.result - The results of executing the test programs. The
assembly programs generated by your compiler should produce exactly these results
when executed in order for the corresponding tests to pass.

∗ /benchmarks/*.py - Non-trivial benchmark programs, meant to test the overall work-
ing of your compiler. The testing for these programs will be done in the same manner
as done for the tests in the sample directory, but these tests will have higher weight
during grading.

∗ /benchmarks/*.py.out.typed - Typed ASTs corresponding to the benchmark test
programs. These will be the inputs to your code generator.

∗ /benchmarks/*.py.out.typed.s.result - The results of executing the benchmark
programs.

• target/: The target directory will be created and populated after running mvn clean

package. It contains automatically generated files that you should not modify by hand. This
directory will be deleted before your submission.

• chocopy-ref.jar: A reference implementation of the ChocoPy compiler, provided by the in-
structors.

• README.md: You will have to modify this file with a writeup.

• checkpoint tests.txt: List of tests used for grading at the checkpoint (ref. Section 8). This
list is same as Appendix A of this document.

5 Execution Environment

The target architecture for this code generation assignment is RV32IM, which is the 32-bit version
of RISC-V that supports basic integer arithmetic plus the multiplication (and division) extensions.

In order to execute RISC-V code in a platform-independent manner, we will be using a version
of the Venus simulator, which was originally developed by Keyhan Vakil. Venus dictates the
execution environment, which includes the initial values of registers, the addresses of the various
memory segments, and the set of supported system calls. Section 3 points to some documentation
for Venus.

4

5.1 Venus 164

To support the goals of this project, our version of Venus has been modified—we refer to this
variant as Venus 164. The modifications mainly try to make the assembly language conform to the
one supported by the official GNU-based RISC-V toolchain.

• .word directive: We have added support for emitting addresses in the data segment using the
syntax .word <label>. Originally, Venus only allowed emitting integer literals.

• .align directive: We have added limited support for specifying byte alignment in the data
segment. The supported syntax is .align <n>, which inserts zero-valued bytes as padding such
that the next available address is a multiple of 2n. Originally, Venus did not support alignment.

• .string directive: We have added support for emitting ASCII strings using the syntax .string

<string in quotes>. Originally, Venus supported a directive called .asciiz for emitting
strings; this still works, but it is not supported by the GNU toolchain. We like to use the
standardized version instead.

• .space directive: .space <n> inserts n 0-bytes into the data segment.

• .equiv directive: .equiv <sym>, <value> defines the label <sym> to have the value <value>.
Here, <value> may be a numeral or another symbol (possibly defined by .equiv). As for
ordinary labels, the directive may appear after uses of <sym>, allowing you to include a value in
an assembler instruction before figuring out precisely what that value will be.

• The original Venus supports some extra non-standard pseudo-instructions (such as seq and sgt).
We enforce strict mode in Venus 164: the pseudo-instructions we support include only the ones
listed on page 110 of the RISC-V specifications, version 2.2 (ref. Section 3).

The simulator is distributed both as a JAR in our instructional maven repo (for use with the
auto-grader) and in web form to enable interactive debugging. The web version of Venus 164 is
hosted at the following URL:

https://chocopy.org/venus.html

You can enter RISC-V assembly code in the editor and then switch to the simulator tab to run the
program. You can add break-points and step through instructions one at a time to observe changes
to the registers and to the memory. The CS164 staff cannot provide support on using the web UI.

6 Assignment goals

The objective of this assignment is to build a code generator for ChocoPy that takes as input
a typed AST corresponding to a ChocoPy program in JSON format, and produces as output a
RISC-V assembly program that can execute in the Venus 164 execution environment.

5

https://chocopy.org/venus.html

6.1 Running the compiler

6.1.1 Four-step process

The process of executing a ChocoPy program consists of four basic steps:

1. java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.ChocoPy \

--pass=r <chocopy_input_file> --out <ast_json_file>

2. java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.ChocoPy \

--pass=.r <ast_json_file> --out <typed_ast_json_file>

3. java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.ChocoPy \

--pass=..s <typed_ast_json_file> --out <assembly_file>

4. java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.ChocoPy \

--run <assembly_file>

where <chocopy input file> is a ChocoPy program (usually with a .py extension),
<ast json file> is the parsed AST in JSON format (usually with a .out extension),
<typed ast json file> is the type-annotated AST in JSON format (usually with a .out.typed

extension) and <assembly file> is the compiled RISC-V assembly program (usually with a
.out.typed.s extension).

6.1.2 Reference implementation

To observe the assembly program produced by the reference implementation, replace step 3 above
with the following command:

java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.ChocoPy \

--pass=..r <typed_ast_json_file> --out <assembly_file>

The assembly program that your compiler generates need not match the program generated by the
reference compiler. See Section 6.2 onward for what is expected from your compiler.

6.1.3 Shortcuts: chained commands

To simplify development, you can also club the above commands into a single command that pipes
the output of the each phase to the input of the next phase. The combined command to produce
an assembly file from an input ChocoPy program (which is equivalent to running steps 1–3) is as
follows:

java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.ChocoPy \

--pass=rrs <chocopy_input_file> --out <assembly_file>

You can also add --run at the end of this chain to actually execute an input ChocoPy program in
one step.

java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.ChocoPy \

--pass=rrs --run <chocopy_input_file>

6

Finally, the command

java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.ChocoPy \

--pass=rrr --run <chocopy_input_file>

will run the combined command with the reference implementation.
In any command, you can omit the --out <file> argument to have the result be printed to

standard output instead of a file.

6.2 Input/output specification

The interface to your code generation assignment will be the static method
StudentCodeGen.process(). The input to this method is a typed AST in JSON format,
corresponding to a semantically valid and well-typed ChocoPy program. The typed AST will
be in the same format that was used as the output format for the previous assignment. The
field inferredType will be non-null for every expression in the AST that evaluates to a value.
The output is expected to be a RISC-V assembly program, which is executed in the Venus 164
environment. The assembly program that your compiler generates need not match the
program generated by the reference compiler. The reference compiler performs several
optimizations, which you are not expected to match. Your goal is to independently produce an
assembly program that implements the operational semantics given in the ChocoPy reference
manual.

6.3 Validation

Testing is performed by executing the generated RISC-V program in Venus 164 and comparing
the contents of the output stream with that produced by the reference-implementation-generated
program. The program is expected to behave as per the operational semantics defined in the
ChocoPy language manual: chocopy language reference.pdf. The output should contain a
sequence of lines, where the ith line corresponds to the string representation of the str, int, or
bool object provided as argument to the ith dynamic invocation of the predefined print function.

6.4 Memory Management

In this assignment, all compiled ChocoPy programs will have 32MB of memory to work with. The
register gp will point to the beginning of the heap before the first top-level statement is executed.
Garbage collection (GC) has not yet been implemented in the reference implementation; therefore,
newly allocated objects block space for the entire remaining duration of the program. You are
not expected to implement GC in this assignment, though the heap and object layouts have been
designed in such a way that GC can be easily integrated. The tests used by the auto-grader require
far less than 32MB of memory to execute.

6.5 Error handling

In case of run-time errors, your program is expected to print an appropriate error message and
exit with an appropriate exit code. The error messages and exit codes used by the reference
implementation are described in chocopy implementation guide.pdf. Fortunately, you do not
have to hand-code the error messages or corresponding exit codes. The errors corresponding to

7

invalid arguments to predefined functions and out-of-memory are generated by the code that has
already been provided to you. For errors corresponding to operations on None, division by zero,
and index out-of-bounds, we have provided you built-in routines that are emitted in the method
CodeGenImpl.emitCustomCode(). Your generated programs can simply jump to one of these labels
when the appropriate condition is met and the error message will be printed for you before aborting
the program with an appropriate exit code. You do need to jump to these error handlers exactly
when the appropriate condition is met. A run-time error is raised when one of the pre-conditions in
the operational semantics fails to be true. For example, in the operational rule [dispatch], if the
object on which a method is dispatched turns out to be the value None, then the second line fails to
be true; therefore, the run-time error is reported after evaluating the object expression but before
evaluating any of the arguments of the method call. These rules have been designed to conform to
the error-reporting logic used by Python.

You will not be tested on program executions that lead to arithmetic integer overflow or out-
of-memory.

6.6 README

Before submitting your completed assignment, you must edit the README.md and provide the
following information: (1) names of the team members who completed the assignment, (2) acknowl-
edgements for any collaboration or outside help received, and (3) how many late hours have been
consumed (refer to the course website for grading policy).

7 Implementation Notes

In this assignment, you are provided a significant amount of skeleton code. You are not strictly
required to use this code; however, we strongly recommend that you do, since it performs about half
of the work required to implement a code generator for ChocoPy. This section describes the design
of the skeleton code. The code itself is also heavily documented using Javadoc-style comments.

Although the entry point for this assignment is the static StudentCodeGen.process() method,
this method does little more than handle input/output. Most of the heavy lifting is done within the
CodeGenImpl class in the chocopy.pa3 package, which itself is a sub-class of CodeGenBase from
the chocopy.common package. The CodeGenImpl class contains skeletons for emitting RISC-V code
corresponding to top level statements and function bodies. You are expected to edit this skeleton
and emit code corresponding to all types of program statements and expressions. In doing so, you
will most likely want to use inherited fields and methods from the base class, CodeGenBase, which
you cannot modify (but can override if needed).

7.1 Code generation base

The following tasks have already been performed by CodeGenBase:

1. Analysis of the entire program to create descriptors for classes, functions/methods, variables, and
attributes. These descriptors, whose class names end with Info, are placed in appropriate symbol
tables. The symbol tables and Info objects are described in Section 7.2. The globalSymbols

field in CodeGenBase references the global symbol table. Every FuncInfo object references
its corresponding function’s symbol table, which takes into account local definitions, implicitly

8

inherited names, as well as explicit nonlocal/global declarations. You likely do not need to
modify the symbol tables in this assignment.

2. Code generation for prototypes of every class (refer to chocopy implementation guide.pdf to
understand what prototype means). The ClassInfo objects contain labels pointing to their
corresponding prototypes in memory.

3. Code generation for method dispatch tables for every class. The ClassInfo objects contain
labels pointing to their corresponding dispatch tables in memory.

4. Code generation for global variables. For every global variable in the program, there exists
exactly one GlobalVarInfo object in the global symbol table (these may be inherited by a
function’s symbol table). A GlobalVarInfo object contains a label pointing to the global variable
allocated in memory. Global variables are emitted in the data segment using their initially defined
values from the ChocoPy program.

5. Management of and code generation for constants. The constants field in CodeGenBase refer-
ences a manager for constant integers, booleans, and strings encountered in the program. The
method constants.getIntConstant(int x) method returns a label that points to a globally-
allocated ChocoPy int object having the same value as the Java integer x. Similar methods
are available for booleans and strings. The constants’ manager performs caching, so that ev-
ery distinct constant label references a unique constant. Once code is emitted for all program
statements, the CodeGenBase emits all encountered constants to the global data segment.

6. Code generation for predefined functions and built-in routines. The CodeGenBase class emits
bodies of predefined functions such as len, print, input, and object. init , as well as built-
in routines such as abort and alloc. Although you do not need to modify this logic, you
may want to read through the code that emits these functions/routines in order to get some
inspiration for how to emit code in your own CodeGenImpl for user-defined functions.

7. Initialization of the heap and clean exit. The CodeGenBase class emits some start-up code that
should execute before the first top-level statement is executed. The start-up code includes logic
for initializing the heap and setting the initial value of fp. The CodeGenBase class also emits
some tear-down code that should execute after the last top-level statement has been executed.
The tear-down code performs a successful exit from the execution environment. The code that
you will emit in the method CodeGenImpl.emitTopLevel() will be placed in-between the start-
up and tear-down logic.

To summarize, the CodeGenBase takes care of populating symbol tables, emitting everything
that needs to be emitted to the global data segment, as well as emitting boilerplate code to the
text segment. Your task in this assignment is to leverage the symbol tables and other available
utilities to emit code in the text segment by filling in the CodeGenImpl.

Although you probably do not need to do so, it is possible to override virtually every single
task that CodeGenBase performs, since all of its fields and methods are defined with protected or
public access.

7.2 Symbol table

A symbol table maps identifiers to their corresponding symbol descriptors. This mapping changes
depending on the current scope. The starter code creates the following types of symbol descriptors

9

in its analysis (you likely do not need to add to this hierarchy):

• FuncInfo: A descriptor for functions and methods. A function has an associated depth: global
functions and methods have a depth of 0, whereas nested functions that are defined within a
function of depth d have a depth of d + 1. A FuncInfo object contains the function’s depth,
its symbol table, its parameter list (a list of names), its local variables (a list of StackVarInfo

objects), a label corresponding to its entry point, and a reference to the FuncInfo of its enclosing
function (if applicable). The FuncInfo class also contains a utility method, getVarIndex(), to
retrieve the index of a parameter or local variable in the function’s activation record.

• ClassInfo: A descriptor for classes. A ClassInfo object corresponding to a class contains its
type tag, its attributes (a list of AttrInfo objects), its methods (a list of FuncInfo objects), a
label corresponding to its prototype and a label corresponding to its dispatch table. This class
also contains utility methods to get the index of an attribute in the object layout or the index
of a method in the dispatch table.

• GlobalVarInfo: A descriptor for a global variable. A GlobalVarInfo object simply contains
the label of its corresponding global variable.

• AttrInfo: A descriptor for class attributes. An AttrInfo object contains the initial value of its
corresponding attribute, represented as a label that points to a constant allocated in the data
segment; the label may be null in case of an initial value of None.

• StackVarInfo: A descriptor for variables allocated on the stack, such as parameters and local
variables. A StackVarInfo object contains the initial value of its corresponding variable, repre-
sented as a label that points to a constant allocated in the data segment; the label may be null

in case of an initial value of None. A StackVarInfo object also references the FuncInfo object
corresponding to the function that defines the stack variable; this pointer is useful for determin-
ing the static depth of a stack-allocated variable, which may be necessary when emitting code
for accessing non-local variables.

7.3 RISC-V backend

The class RiscVBackend contains a large number of methods for emitting RISC-V assembly instruc-
tions to an output stream. The field backend defined within CodeGenBase references the backend
whose output stream will be returned by the static method StudentCodeGen.process() as the as-
sembly program produced by your ChocoPy compiler. The methods within RiscVBackend usually
take the form of emitXYZ, where XYZ is a RISC-V instruction in uppercase. These methods are
strongly typed: the arguments to these methods are expected to be objects of type Register (an
enum defined within RiscVBackend), type Label (for addresses), or type Integer (for immediates).
Each such method also expects a comment string as the last argument. For example, to generate
the RISC-V instruction lw a0, 4(fp), you might execute the following Java code in CodeGenImpl:

backend.emitLW(A0, FP, 4, "Load something");

Similarly, to invoke a function whose descriptor is available in a variable say funcInfo, you might
execute the following Java code in CodeGenImpl:

backend.emitJAL(funcInfo.getCodeLabel(), "Invoke function");

10

7.4 Labels

The class Label is heavily used throughout the provided code framework to represent labels in the
generated assembly. A Label object simply encapsulates the name of a label as a string. Several
instruction-emitting methods of the RiscVBackend expect a Label as an argument.

Labels can be created in two ways: either by directly instantiating a new Label object with
a specific string provided as an argument to its constructor, or by invoking the utility method
generateLocalLabel() defined in CodeGenBase. The utility method generates a fresh label
named label <n>, where <n> is a unique integer. This method is quite useful when generat-
ing labels for use in local control structures such as conditional branches or loops. The method
RiscVBackend.emitLocalLabel(Label) is typically used to emit such a label to assembly. By
convention, the code generated for a given function should not contain jumps to a local label in
a different function. On the other hand, the method RiscVBackend.emitGlobalLabel(Label) is
used to emit labels that are meant to be referenced across function boundaries; this method also
creates a global symbol for the emitted label using the .globl assembly directive. Global labels are
used for function entry, global variables, constants, object prototypes, dispatch tables, and built-in
routines. Almost all of the global labels that you will need to refer to have already been created
by CodeGenBase.

You should only jump to global labels using unconditional jumps such as jr or jal. If you
want to conditionally branch to a global label (e.g. with beqz), then first conditionally branch
to a local label, and then jump from there to the target global label. This is because in RISC-V,
conditional branch instructions require some bits to encode the registers to test; therefore, the jump
target cannot be very far (the offset has to fit within 12 bits). Unconditional jump instructions can
jump to targets that are further away.

7.5 Anticipated FAQ

This section answers some common questions that we anticipate may arise when working with the
skeleton code.

Where can I find the label corresponding to entity X? Labels for built-in routines are
present in fields of CodeGenBase. For example, the field allocLabel points to the label for the built-
in routine alloc. Labels for class prototypes and dispatch tables are contained in the corresponding
ClassInfo objects. Labels for function entry are contained in the corresponding FuncInfo objects.
Labels for global variables are contained in the corresponding GlobalInfo objects.

How do I get a ClassInfo/FuncInfo object corresponding to X? The CodeGenBase has
fields that reference ClassInfo objects corresponding to predefined classes. For example, the field
objectClass references the class descriptor for class object, the field intClass references the
descriptor for int, and so on. Similar fields are present for predefined functions, such as printFunc
and lenFunc. In general, you can query the current symbol table to retrieve the descriptor for
a class or a function that is currently in scope. One exception is the ClassInfo object for lists.
The field listClass in CodeGenBase references a pseudo-class descriptor for lists, which is useful
for getting a label that points to the prototype empty list object. There is no real list class in
ChocoPy, and therefore there is no entry in any symbol table that references this descriptor.

11

How do I emit instruction XYZ? There isn’t an emitXYZ() defined in RiscVBackend.
There are two ways to handle this. First, you could call the emitInsn() method, which emits a raw
instruction given as a string. This allows you to emit virtually any line of code to assembly, but it
is not strongly typed. Alternatively, you can create a custom strongly typed emitXYZ method for
an instruction XYZ by sub-classing RiscVBackend in the chocopy.pa3 package. Add the required
method in the sub-class and then use an instance of this custom sub-class in StudentCodeGen

instead.

How do I add functionality to one of the Info classes (e.g. FuncInfo)? If you feel the
need to modify any of the Info classes, simply create sub-classes in the chocopy.pa3 package.
Let’s say you create a subclass MyFuncInfo extends FuncInfo with some custom methods. Now,
override the factory method makeFuncInfo, which is originally defined in CodeGenBase, in your
CodeGenImpl class. In this factory method, you can create instances of MyFuncInfo instead and
the symbol table will now contain instances of this sub-class throughout the program. There is
one factory method corresponding to every type of Info class whose instances are inserted into the
symbol table. That said, you probably do not need to do this at all.

Why does the reference compiler emit code for X in this way? The reference compiler
performs several optimizations, including but not limited to: (a) using fp-relative indexing of
temporaries instead of moving sp around all the time, (b) unboxing int and bool values unless
they are used as an object, (c) aligning the stack to 64-bit boundaries at call sites. The course staff
cannot help you reverse engineer the code generated by the reference compiler (unless it produces an
incorrect result, in which case you should submit a bug report). The ChocoPy language reference
manual and associated implementation guide should be sufficient to fully implement the compiler.

7.6 Recommendations

This assignment can get quite tricky if you are not comfortable with assembly code. We strongly
recommend that you emit useful comments with your assembly code, so that you know what your
code is doing when you have to debug it. The Venus Web UI can be a useful tool for interactive
debugging.

You may also want to decide on a strategy in terms of which language features to implement
first, and in what order to proceed from there on. We recommend trying to tackle code genera-
tion for function calls from the get go: this will enable you to actually invoke print and observe
output. Other easy features to implement include global variables, function prologues and epi-
logues, local variables, and basic arithmetic. Code generation for if-else and while loops is also
straightforward. Of medium difficulty would probably be code generation for object attribute ac-
cess, method dispatch, nested functions (including nonlocal variable access), list instantiation and
list-element access. The hardest features to implement would likely be string/list concatenation
and for loops—make sure to allocate sufficient time to tackle these once you are comfortable with
the basics.

7.7 Web IDE (Experimental)

An experimental web-based ChocoPy IDE is provided in the web directory. You need Python 3+
to run this IDE. For PA2, the purpose of the IDE is to able to visualize syntactic and semantic

12

errors inline with the code itself. It is intended to serve as a debugging aid while you develop your
compiler, as an alternative to inspecting your JSON output manually.

To run the web-based IDE: open a terminal, cd to the web directory of the assignment package,
and run the following command:

python -m WebCompiler 8000

Make sure that python corresponds to Python 3+. On some installations, you may have to specify
the command python3 instead. This command starts a local web server at port 8000. Leave this
process running while you use your Web IDE.

Now, go to a Web browser and navigate to http://localhost:8000 (replace 8000 if you used
a different port). You should see a web page with a code editor, and options to select your own
compiler stages (i.e., the student’s version) or the reference compiler’s stages. Enter a ChocoPy
program and click the button to compile to RISC-V. If the program is valid, then a new window
will open up with the compiled RISC-V code pre-filled within the Venus Web-based simulator. In
case of static errors, this window will close and you will be taken back to the code editor; hover
your mouse over the red cross in the left margin to read the corresponding error message. The
source locations associated with compiler errors in the JSON are used to highlight the errornous
fragments of code in the editor.

For the Web IDE to work, you must have the web server up and running, and you must have
built the JARs using mvn clean package. The PA3 starter code does not bundle the student’s
parser or semantic analysis. If you wish to use your own implementation for the first two stages
instead of the reference implementation from your PA1 and PA2 repositories into the appropriate
directories corresponding to packages pa1 and pa2 respectively.

Support The Web IDE is an experimental feature provided on a best-effort basis. While the in-
structors appreciate bug reports for the IDE on Piazza, it is not an integral part of your assignment
and as such we cannot guarantee that issues with the IDE (if any) will be addressed by the assign-
ment submission deadline. It is provided only with the hope that it may be useful in avoiding some
of the tedious aspects of inspecting the JSON manually. Additionally, you are welcome to send us
feature requests or to share improvements to the UI on Piazza (you can edit web/index.html).

8 Checkpoint

Part way through the assignment, on November 25, 2020, we will have a checkpoint to evalu-
ate your progress. At that time, we want your code generation to work correctly on a small set
of ChocoPy language features. In particular, we want your code to work on programs with only
functions, variable access (global + local + nonlocal), integer and boolean operations, and simple
control-structures: if-else and while. For the checkpoint, you are not required to have imple-
mented object instantiation, attribute access, method dispatch, or operations on lists and strings.
Appendix A lists the tests that you are expected to pass by the checkpoint. The same tests will
also be included as part of the final submission, where you are expected to generate code for the
full ChocoPy language. The checkpoint accounts for a substantial part of your overall grade for
this assignment, so do not take it lightly. Section 9.1 describes how to submit your checkpoint.
Section 10.1 describes the grading rubric. For the checkpoint, you do not need to create custom
tests in the student contributed directory and do not need to write anything in the README
apart from your names. There are no slip hours available for the checkpoint.

13

9 Submission

9.1 Checkpoint

Submitting your checkpoint requires the following steps:

• Run mvn clean to rid your directory of any unnecessary files.

• Add and commit all your progress and push changes to the repository. Run git commit -a

followed by git push origin to achieve this.

• Tag the desired commit with proj3a. If the desired commit is the latest one, run git tag

proj3a-n, where n is an integer. Otherwise, run git tag proj3a-n <commit-id> where
<commit-id> is the commit you want to tag as your final submission.

• Push the tag using git push --tags or git push origin proj3a-n.

9.2 Final submission

Submitting your final assignment requires the following steps:

• Run mvn clean to rid your directory of any unnecessary files.

• Add and commit all your progress and push changes to the repository. Run git commit -a

followed by git push origin to achieve this.

• Tag the desired commit with proj3-n. If the desired commit is the latest one, run git tag

proj3-n. Otherwise, run git tag proj3-n <commit-id> where <commit-id> is the commit
you want to tag as your final submission.

• Push the tag using git push --tags or git push origin proj3.

10 Grading (30 points)

The project as a whole is worth 30 points. Of these, 8 points will come from the checkpoint, 18
from the final submission, and 4 from a team assessment. The checkpoint and final submission
apply to the entire team, and the team assessment is individual.

10.1 Checkpoint (8 points)

We count the number of successful simple tests from the file src/test/pa3/data/samples and bench-
marks from the src/test/pa3/data/benchmarks directory, which exercise only the features re-
quired for checkpoints. Each benchmark program tests a combination of a subset of ChocoPy fea-
tures to perform a non-trivial task. No hidden tests will be used for the checkpoint. Appendix A
lists the tests that we will run. The checkpoint scores up to 8 points, based on the proportion of
tests passed.

14

10.2 Final submission (18 points)

• We count the number of successful sample, benchmark, and hidden tests (the sample and bench-
mark tests include the original checkpoint tests.) The maximum score for this part is 16 points.

• 1 point for test src/test/data/pa3/student contributed/good.py, which should cover a
range of ChocoPy features such as arithmetic, objects, lists, and string operations. Only exercise
the semantics that your implementation handles!

• 1 point for code cleanliness and structure. These include clear naming for variables and other
symbols, consistent spacing and punctuation conventions, reasonable modularization of functions
and other components, documentation comments on new methods and instance variables, and
possibly comments at the start of some methods explaining non-obvious logic.

10.3 Extra credit: Bug reports

The reference implementation possibly contains some bugs. If you find a bug, report it by making
a post on Piazza with a sample input program and describe how the expected output should differ.
The first student/team to report a bug gets extra credit (1 point per unique bug with a maximum
of 4 extra credits per team).

Bugs in the reference implementation are defined as (1) unexpected exceptions being reported
or (2) violations of the specifications of the assignment or the specifications of the ChocoPy manual,
which would lead to incorrect results. Minor mistakes in the ChocoPy manual or this document
itself are not considered bugs in the reference implementation, though we would appreciate any
such feedback.

The decision on whether to accept a bug report as valid and distinct from previous bug reports
is at the discretion of the instructors.

10.4 Extra credit: Performance Tournament

To complete this assignment, you are only expected to conform to ChocoPy semantics; you are not
expected to implement any specific optimizations. However, for those of you who are speed fiends,
we will be hosting a bonus tournament to evaluate the performance of your compilers on the five
non-trivial programs provided in the benchmarks directory.

For simplicity and reproducibility, we will measure performance not in terms of how much time
it takes for your generated code to execute a program, but instead we will count the total number
of RISC-V instructions executed. To measure this value, simply add the --profile argument
immediately after --run. For example:

java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.ChocoPy \

--pass=rrs --run --profile <chocopy_input_file>

You can of course provide --pass=rrr to measure the performance of the reference compiler.
We will publish two leaderboards on Piazza: one after the checkpoint deadline and one after

the final deadline. After the checkpoint, we will measure performance on exp.py and prime.py.
After the final submission, we will measure performance on each of the five benchmarks: exp.py,
sieve.py, tree.py, prime.py, stdlib.py. In order to qualify for the competition, your compiler
must pass the test corresponding to the benchmark successfully by the submission deadline.

15

We will publish only the scores for the top-5 teams in the leaderboard for each of these rankings.
If you prefer to opt out of this listing, please let us know.

A Checkpoint Tests

At the checkpoint, your code generator will be evaluated on the following 23 tests in
src/test/data/pa3:

sample/literal_bool.py sample/op_cmp_int.py

sample/literal_int.py sample/op_div_mod.py

sample/literal_str.py sample/op_logical.py

sample/id_global.py sample/op_mul.py

sample/id_local.py sample/op_negate.py

sample/var_assign.py sample/op_sub.py

sample/call.py sample/stmt_if.py

sample/call_with_args.py sample/stmt_while.py

sample/nested.py sample/stmt_return_early.py

sample/nested2.py benchmarks/exp.py

sample/op_add.py benchmarks/prime.py

sample/op_cmp_bool.py

16

	Overview
	Getting started
	External Documentation
	Files and directories
	Execution Environment
	Venus 164

	Assignment goals
	Running the compiler
	Four-step process
	Reference implementation
	Shortcuts: chained commands

	Input/output specification
	Validation
	Memory Management
	Error handling
	README

	Implementation Notes
	Code generation base
	Symbol table
	RISC-V backend
	Labels
	Anticipated FAQ
	Recommendations
	Web IDE (Experimental)

	Checkpoint
	Submission
	Checkpoint
	Final submission

	Grading (30 points)
	Checkpoint (8 points)
	Final submission (18 points)
	Extra credit: Bug reports
	Extra credit: Performance Tournament

	Checkpoint Tests

