Section 11: First-Class Functions

1. What happens when we call a function?

Complete the following diagram, which represents the stack immediately after the function call
(f 3 6 9).Assume that rspis aligned to a multiple of 16 when we compile the call. By “rsp” in the
left column, we mean the value of rsp before the function call.

Address Value
rsp - 56
rsp - 48
rsp - 40
rsp - 32
rsp - 24
rsp - 16
rsp - 8
rsp <return address for caller’s frame>

Where does the stack frame of the callee start?

How would the stack frame change if we dynamically communicate the number of arguments
like we did in Homework 6?

2. What's the use of function pointers without lambdas?

Write a program in our language that only works once we support function pointers (do not
include any lambda expressions at this point).

What can function pointers be useful for?

3. Handling lambdas without free variables

The C11 standard supports function pointers, but no lambdas. How could you change the
following functions to be a valid C11 code while still maintaining its functionality?

typedef struct node {
int value;
struct node* next;
} node;

node*x map(nodex list, int (xf)(int)) {
if(list == NULL) return NULL;
node*x next = map(list->next, f);
nodex new = malloc(sizeof(node));

new->next = next;

new->value = f(list->value);
return new;

node* square(nodex list) {
return map(list, [J(int n) { return n *x n; });

/! mm e mmm—o - - This is the problematic
// section b/c lambdas are
// not supported in C11.

Interactive Version (runs in your browser!): https:/godbolt.org/z/jjhcafffT

https://godbolt.org/z/jjhcafffT

4. Handling lambdas with free variables

We will now explore what happens when we compile the following lambda in an environment
where the variables x and y are defined:

(lambda (z) (+ z (+ y x)))
4.1 Compiling the creation of a lambda
4.1.1 Setting up the heap

On the left is the stack layout at the site where the lambda is created.

On the right, fill in the values that are transferred to the heap when we compile the lambda.
Assume that the label of the lambda implementation is called _1lambda_1.

Stack Heap
Address Value Address Value
rsp - 16 y rdi
rsp - 8 X rdi + 8
rsp <return address> rdi + 16

Why can’t we just inline the values of x and y in the body of the lambda?

4.1.2 Stack layout going into the body

We now want to explore the stack and heap layout that we would expect to see right after we
jump to the label of the lambda function. Please show where x, y and z are located on the stack.

Stack

Address Value

rsp - 24

rsp - 16

rsp - 8

rsp <return address>

Who is responsible for placing x and y there? (] caller [] callee
Who is responsible for placing z there? [caller [] callee

How do we obtain the values of x and y?

4.2 Compiling a call to a lambda

Finally, let’s talk about how a lambda function is called. Feel free to look at the compile.ml file
of the class compiler, starting at the line | Call (f, args) when not is_tail ->.

Please fill in the blanks in the following pseudocode that describes how to call a lambda function.

1. Compile the arguments and place them on the

2. Compile the expression.

3. Ensure that rax is tagged with

4. Copy the content of rax to the

a. Thisis important for the function to be able to retrieve the

and copy them onto the stack.

5. Load the address of the function into rax from the by
subtracting the type tag from
6. Perform a call to the address now stored in , modifying the

stack pointer before and after for alignment purposes.

Here's some blank diagrams that you can use to help yourself visualize the algorithm!

Stack Heap
Address Value Address Value
rsp - 24 rdi
rsp - 16 rdi + 8
rsp - 8 rdi + 16
rsp rdi + 24

5. The spectrum of first-class functions

Assume that variadic arguments and the appLly function from Homework 6 are not supported.

First-class functions

No first-class

. Functions
functions

pointers w/o
lambdas

Lambdas (w/o Lambdas (w/
free variables) free variables)

Is the function
label known at
the call site?

Is the number
of expected
arguments
known at the
call site?

Where is the
code for the
function
generated?

How is the
function label
created?

How do we
know which
address to jump
to at the call
site?

Do we need to
use the heap?
Why?

