
Sec�on 11: First-Class Func�ons

1. What happens when we call a func�on?
Complete the following diagram, which represents the stack immediately a�er the func�on call
(f 3 6 9) . Assume that rsp is aligned to a mul�ple of 16 when we compile the call. By “ rsp ” in the
le� column, we mean the value of rsp before the func�on call.

Where does the stack frame of the callee start?

How would the stack frame change if we dynamically communicate the number of arguments
like we did in Homework 6?

2. What’s the use of func�on pointers without lambdas?
Write a program in our language that only works once we support func�on pointers (do not
include any lambda expressions at this point).

What can func�on pointers be useful for?

Page 1 / 5

Address Value

rsp - 56

rsp - 48

rsp - 40

rsp - 32

rsp - 24

rsp - 16

rsp - 8

rsp <return address for caller’s frame>

3. Handling lambdas without free variables
The C11 standard supports func�on pointers, but no lambdas. How could you change the
following func�ons to be a valid C11 code while s�ll maintaining its func�onality?

Interac�ve Version (runs in your browser!): h�ps://godbolt.org/z/jjhcafffT

Page 2 / 5

typedef struct node {
 int value;
 struct node* next;
} node;

node* map(node* list, int (*f)(int)) {
 if (list == NULL) return NULL;
 node* next = map(list->next, f);
 node* new = malloc(sizeof (node));
 new->next = next;
 new->value = f(list->value);
 return new;
}

node* square(node* list) {
 return map(list, [](int n) { return n * n; });
 // --------------------------- This is the problematic
 // section b/c lambdas are
 // not supported in C11.
}

https://godbolt.org/z/jjhcafffT

4. Handling lambdas with free variables
We will now explore what happens when we compile the following lambda in an environment
where the variables x and y are defined:

(lambda (z) (+ z (+ y x)))

4.1 Compiling the crea�on of a lambda

4.1.1 Se�ng up the heap

On the le� is the stack layout at the site where the lambda is created.

On the right, fill in the values that are transferred to the heap when we compile the lambda.
Assume that the label of the lambda implementa�on is called _lambda_1 .

Why can’t we just inline the values of x and y in the body of the lambda?

4.1.2 Stack layout going into the body

We now want to explore the stack and heap layout that we would expect to see right a�er we
jump to the label of the lambda func�on. Please show where x , y and z are located on the stack.

Stack

Who is responsible for placing x and y there? ▢ caller ▢ callee

Who is responsible for placing z there? ▢ caller ▢ callee

How do we obtain the values of x and y ?

Page 3 / 5

Stack

 Heap

Address Value

rsp - 16 y

rsp - 8 x

rsp <return address>

Address Value

rdi

rdi + 8

rdi + 16

Address Value

rsp - 24

rsp - 16

rsp - 8

rsp <return address>

4.2 Compiling a call to a lambda

Finally, let’s talk about how a lambda func�on is called. Feel free to look at the compile.ml file
of the class compiler, star�ng at the line | Call (f, args) when not is_tail -> .

Please fill in the blanks in the following pseudocode that describes how to call a lambda func�on.

Here’s some blank diagrams that you can use to help yourself visualize the algorithm!

Page 4 / 5

1. Compile the arguments and place them on the ________________________.

2. Compile the ________________________ expression.

3. Ensure that rax is tagged with ________________________.

4. Copy the content of rax to the ________________________.

a. This is important for the func�on to be able to retrieve the

________________________ and copy them onto the stack.

5. Load the address of the func�on into rax from the ________________________ by

subtrac�ng the ________________________ type tag from ________________________.

6. Perform a call to the address now stored in ________________________, modifying the

stack pointer before and a�er for alignment purposes.

Stack

 Heap

Address Value

rsp - 24

rsp - 16

rsp - 8

rsp

Address Value

rdi

rdi + 8

rdi + 16

rdi + 24

5. The spectrum of first-class func�ons
Assume that variadic arguments and the apply func�on from Homework 6 are not supported.

Page 5 / 5

 No first-class
func�ons

First-class func�ons

Func�ons
pointers w/o

lambdas

Lambdas (w/o
free variables)

Lambdas (w/
free variables)

Is the func�on
label known at
the call site?

Is the number
of expected
arguments
known at the
call site?

Where is the
code for the
func�on
generated?

How is the
func�on label
created?

How do we
know which
address to jump
to at the call
site?

Do we need to
use the heap?
Why?

