Building a Parser III

CS164 3:30-5:00 TT 10 Evans

Prof. Bodik CS 164 Lecture 6

Review: grammar for arithmetic expressions

Simple arithmetic expressions:

```
E \rightarrow n \mid id \mid (E) \mid E + E \mid E \times E
```

- Some elements of this language:
 - id
 - n
 - -(n)
 - n + id
 - id * (id + id)

Prof. Bodik CS 164 Lecture 6

Recursive Descent Parsing

Consider the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int \mid int * T \mid (E)$

- Token stream is: int₅ * int₂
- Start with top-level non-terminal E
- Try the rules for E in order

Prof. Bodik CS 164 Lecture 6

6

When Recursive Descent Does Not Work

- Consider a production 5 → 5 a:
 - In the process of parsing S we try the above rule
 - What goes wrong?
- · A fix?
 - S must have a non-recursive production, say $\mathsf{S}\to\mathsf{b}$
 - expand this production before you expand $S \rightarrow S$ a
- Problems remain
 - performance (steps needed to parse "baaaaa")
 - termination (parse the error input "c")

Prof. Bodik CS 164 Lecture 6

Overview

- · Finish recursive descent parser
 - when it breaks down and how to fix it
 - eliminatina left recursion
 - reordering productions
- Predictive parsers (aka LL(1) parsers)
 - computing FIRST, FOLLOW
 - table-driven, stack-manipulating version of the parser

Prof. Bodik CS 164 Lecture 6

LS 164 Lecture 6

Review: derivation

Grammar: $E \rightarrow n \mid id \mid (E) \mid E + E \mid E \times E$

a derivation:

E rewrite E with (E)

(E) rewrite E with n

(n) this is the final string of terminals

another derivation (written more concisely):
 E → (E) → (E*E) → (E+E*E) → (n+E*E) → (n+id)

$$E \rightarrow (E) \rightarrow (E*E) \rightarrow (E+E*E) \rightarrow (n+E*E) \rightarrow (n+id*E) \rightarrow (n+id*id)$$

- this is <u>left-most derivation</u> (remember it)
 - always expand the left-most non-terminal
 - can you guess what's right-most derivation?

Prof. Bodik CS 164 Lecture 6

Recursive-Descent Parsing

- Parsing: given a string of tokens t₁ t₂ ... t_n, find its parse tree
- Recursive-descent parsing: Try all the productions exhaustively
 - At a given moment the fringe of the parse tree is: $t_1\,t_2\,...\,t_k\,A\,...$
 - Try all the productions for A: if $A \rightarrow BC$ is a production, the new fringe is $t_1 t_2 ... t_k B C ...$
 - Backtrack when the fringe doesn't match the string
 - Stop when there are no more non-terminals

Prof. Bodik CS 164 Lecture 6

Solutions

- First, restrict backtracking
 - backtrack just enough to produce a sufficiently powerful r.d. parser
- · Second, eliminate left recursion
 - transformation that produces a different grammar
 - the new grammar generates same strings
 - but does it give us same parse tree as old grammar?
- · Let's see the restricted r.d. parser first

Prof. Bodik CS 164 Lecture 6

A Recursive Descent Parser (1)

- Define boolean functions that check the token string for a match of
 - A given token terminal
 bool term(TOKEN tok) { return in[next++] == tok; }
 A given production of S (the nth)
 bool S_n() { ... }
 - Any production of S: bool S() { ... }
- These functions advance next

Prof. Bodik CS 164 Lecture 6

10

A Recursive Descent Parser (3)

Functions for non-terminal T

```
\label{eq:continuity} \begin{array}{l} bool \ T_1() \ \{\ return\ term(OPEN)\ \&\&\ E()\ \&\&\ term(CLOSE);\ \} \\ bool \ T_2() \ \{\ return\ term(INT)\ \&\&\ term(TIMES)\ \&\&\ T();\ \} \\ bool \ T_3() \ \{\ return\ term(INT);\ \} \end{array}
```

```
bool T() {
  int save = next;
  return (next = save, T_1())
  || (next = save, T_2())
  || (next = save, T_3()); }
```

Prof. Bodik CS 164 Lecture 6

12

Now back to left-recursive grammars

- Does this style of r.d. parser work for our left-recursive grammar?
 - the grammar: $S \rightarrow Sa \mid b$
 - what happens when $S \rightarrow S$ a is expanded first?
 - what happens when $S \rightarrow b$ is expanded first?

Prof. Bodik CS 164 Lecture 6

14

Elimination of Left Recursion

- Consider the left-recursive grammar $S \rightarrow S \alpha \mid \beta$
- S generates all strings starting with a β and followed by a number of α
- · Can rewrite using right-recursion

$$S \rightarrow \beta S'$$

 $S' \rightarrow \alpha S' \mid \epsilon$

Prof. Bodik CS 164 Lecture 6

A Recursive Descent Parser (2)

- For production $E \rightarrow T + E$ bool E_1 () { return T() && term(PLUS) && E(); }
- For production E → T bool E₂() { return T(); }
- For all productions of E (with backtracking)

```
bool E() { int save = next; return (next = save, E_1()) | | (next = save, E_2(); }
```

Prof. Bodik CS 164 Lecture 6

11

Recursive Descent Parsing. Notes.

- To start the parser
 - Initialize next to point to first token
 - Invoke E()
- Notice how this simulates our backtracking example from lecture
- · Easy to implement by hand
- · Predictive parsing is more efficient

Prof. Bodik CS 164 Lecture 6

13

Left-recursive grammars

- A <u>left-recursive grammar</u> has a non-terminal S S \rightarrow * S α for some α
- Recursive descent does not work in such cases
 It goes into an ∞ loop
- Notes:
 - α: a shorthand for any string of terminals, nonterminals
 - symbol →* is a shorthand for "can be derived in one or more steps":
 - 5 \rightarrow 5 α is same as 5 \rightarrow ... \rightarrow 5 α

Prof. Bodik CS 164 Lecture 6

15

Elimination of Left-Recursion. Example

· Consider the grammar

```
S \rightarrow 1 \mid S0 \quad (\beta = 1 \text{ and } \alpha = 0)
```

can be rewritten as

$$S \rightarrow 1 S'$$

 $S' \rightarrow 0 S' \mid \epsilon$

Prof. Bodik CS 164 Lecture 6

More Elimination of Left-Recursion

In general

$$S \rightarrow S \alpha_1 \mid \dots \mid S \alpha_n \mid \beta_1 \mid \dots \mid \beta_m$$

- All strings derived from S start with one of $\beta_1,...,\beta_m$ and continue with several instances of $\alpha_1,...,\alpha_n$
- Rewrite as

$$S \rightarrow \beta_1 S' \mid \dots \mid \beta_m S'$$

 $S' \rightarrow \alpha_1 S' \mid \dots \mid \alpha_n S' \mid \varepsilon$

Prof. Bodik CS 164 Lecture 6

General Left Recursion

The grammar

- · This left-recursion can also be eliminated
- See [ASU], Section 4.3 for general algorithm

Prof. Bodik CS 164 Lecture 6

19

22

Summary of Recursive Descent

- simple parsing strategy
 - left-recursion must be eliminated first
 - ... but that can be done automatically
- · unpopular because of backtracking
 - thought to be too inefficient
 - in practice, backtracking is (sufficiently) eliminated by restricting the grammar
- so, it's good enough for small languages
 - careful, though: order of productions important even after left-recursion eliminated
 - try to reverse the order of $\,E \to T + E \mid T\,$
 - what goes wrong?

Prof. Bodik CS 164 Lecture 6

20

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use
 - By looking at the next few tokens
 - No backtracking
- · Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
- In practice, LL(1) is used

Prof. Bodik CS 164 Lecture 6

23

Predictive Parsing and Left Factoring

Recall the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int \mid int * T \mid (E)$

- Impossible to predict because
 - For T two productions start with int
 - For E it is not clear how to predict
- A grammar must be <u>left-factored</u> before use predictive parsing

Prof. Bodik CS 164 Lecture 6

voulari

Motivation

- · Wouldn't it be nice if
 - the r.d. parser just knew which production to expand next?
 - Idea: replace

```
return (next = save, E1()) || (next = save, E2()); }

- With

switch (something) {
    case 1.1: return E1();
    case 1.2: return E2();
    otherwise: print "syntax error";
    }
```

- what's "something", L1, L2?

the parser will do lookahead (look at next token)

Prof. Bodik CS 164 Lecture 6

LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of production
- LL(1) means that for each non-terminal and token there is only one production that could lead to success
- Can be specified as a 2D table
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production

Prof. Bodik CS 164 Lecture 6

2

Left-Factoring Example

· Recall the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int \mid int * T \mid (E)$

• Factor out common prefixes of productions

$$\begin{array}{l} \mathsf{E} \to \mathsf{T}\,\mathsf{X} \\ \mathsf{X} \to + \,\mathsf{E} \mid \epsilon \\ \mathsf{T} \to (\,\mathsf{E}\,) \mid \mathsf{int}\,\mathsf{Y} \\ \mathsf{Y} \to ^*\,\mathsf{T} \mid \epsilon \end{array}$$

27

Prof. Bodik CS 164 Lecture 6

LL(1) parser

to simplify things, instead of

```
switch (something) {
  case L1: return E1();
  case L2: return E2();
  otherwise: print "syntax error";
}
```

- · we'll use a LL(1) table and a parse stack
 - the LL(1) table will replace the switch
 - the parse stack will replace the call stack

Prof. Bodik CS 164 Lecture 6

29

LL(1) Parsing Table Example (Cont.)

- · Consider the [E, int] entry
 - "When current non-terminal is E and next input is int, use production $\,E\to\,T\,X\,$
 - This production can generate an int in the first place
- Consider the [Y,+] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - We'll see later why this is so

Prof. Bodik CS 164 Lecture 6

31

Using Parsing Tables

- Method similar to recursive descent, except
 - For each non-terminal S
 - We look at the next token a
 - And choose the production shown at [S,a]
- We use a stack to keep track of pending nonterminals
- · We reject when we encounter an error state
- We accept when we encounter end-of-input

Prof. Bodik CS 164 Lecture 6

33

LL(1) Parsing Example

<u>Stack</u>	Input	Action	
E\$	int * int \$	TX	
TX\$	int * int \$	int Y	
int Y X \$	int * int \$	terminal	
У Х \$	* int \$	* T	
* TX\$	* int \$	terminal	
TX\$	int \$	int Y	
int Y X \$	int \$	terminal	
У X \$	\$	8	
X \$ [*]	\$ \$ \$	3	
\$	\$	ACC EPT	
	Prof. Bodik CS 164 Lecture 6	35	

LL(1) Parsing Table Example

· Left-factored grammar

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \varepsilon$

• The LL(1) parsing table:

	int	*	+	()	\$
Т	int Y			(E)		
Ε	TX			TX		
Х			+ E		3	3
У		* T	3		3	3

Prof. Bodik CS 164 Lecture 6

LL(1) Parsing Tables. Errors

- Blank entries indicate error situations
 - Consider the [E,*] entry
 - "There is no way to derive a string starting with * from non-terminal E"

Prof. Bodik CS 164 Lecture 6

LL(1) Parsing Algorithm

PIOI. BOUIK CS 104 LECTURE 0

Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- · No table entry can be multiply defined
- We want to generate parsing tables from CFG

Prof. Bodik CS 164 Lecture 6

36

Constructing Predictive Parsing Tables

- Consider the state $S \rightarrow^* \beta A \gamma$
 - With b the next token
 - Trying to match $\beta b \delta$

There are two possibilities:

- 1. b belongs to an expansion of A
 - Any A $ightarrow \alpha$ can be used if b can start a string derived from α

In this case we say that $b \in First(\alpha)$

Or...

Prof. Bodik CS 164 Lecture 6

Constructing Predictive Parsing Tables (Cont.)

- 2. b does not belong to an expansion of A
 - The expansion of A is empty and b belongs to an expansion of $\boldsymbol{\gamma}$
 - Means that b can appear after A in a derivation of the form $S \rightarrow^* \beta Ab \omega$
 - We say that $b \in Follow(A)$ in this case
 - What productions can we use in this case?
 - Any $A \rightarrow \alpha$ can be used if α can expand to ϵ
 - We say that $\varepsilon \in First(A)$ in this case

Prof. Bodik CS 164 Lecture 6

38

First Sets. Example

· Recall the grammar

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \epsilon$

First sets

rst sets
First(() = {(} First(T) = {int, (} First()) = {})} First(E) = {int, (} First(int) = {int} First(X) = {+,
$$\epsilon$$
}
First(+) = {+} First(Y) = {*, ϵ }

Prof. Bodik CS 164 Lecture 6

Computing First Sets

Definition First(X) = { b | $X \rightarrow^* b\alpha$ } \cup { ϵ | $X \rightarrow^* \epsilon$ }

- 1. First(b) = { b }
- 2. For all productions $X \rightarrow A_1 \dots A_n$
 - Add First(A₁) $\{\epsilon\}$ to First(X). Stop if $\epsilon \notin \text{First}(A_1)$
 - Add First(A_2) { ϵ } to First(X). Stop if $\epsilon \notin First(A_2)$
 - Add First(A_n) {ε} to First(X). Stop if ε∉ First(A_n)
 - Add a to First(X)
- 3. Repeat step 2 until no First set grows

Prof. Bodik CS 164 Lecture 6

41

Follow Sets. Example

Recall the grammar

$$\begin{array}{lll} \mathsf{E} \to \mathsf{T} \mathsf{X} & \mathsf{X} \to + \mathsf{E} \mid \epsilon \\ \mathsf{T} \to (\mathsf{E}) \mid \mathsf{int} \, \mathsf{Y} & \mathsf{Y} \to * \, \mathsf{T} \mid \epsilon \end{array}$$

Follow sets

Prof. Bodik CS 164 Lecture 6

Computing Follow Sets

Definition Follow(X) = { b | $S \rightarrow^* \beta X b \delta$ }

- 1. Compute the First sets for all non-terminals first
- 2. Add \$ to Follow(S) (if S is the start non-terminal)
- 3. For all productions $Y \rightarrow ... X A_1 ... A_n$
 - Add First(A_1) { ϵ } to Follow(X). Stop if $\epsilon \notin First(A_1)$
 - Add First(A₂) {ε} to Follow(X). Stop if ε∉ First(A₂)
 - ...
 - Add First(A_n) {ε} to Follow(X). Stop if ε∉ First(A_n)
 - Add Follow(Y) to Follow(X)
- 4. Repeat step 3 until no Follow set grows

Constructing LL(1) Tables. Example

Prof. Bodik CS 164 Lecture 6

43

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $b \in First(\alpha)$ do
 - T[A, b] = α
 - If $\alpha \rightarrow^* \epsilon$, for each $b \in \text{Follow}(A)$ do
 - T[A, b] = α
 - I[A, D] = α • If $\alpha \rightarrow^* \epsilon$ and $\$ \in \text{Follow}(A)$ do
 - T[A, \$] = α

Prof. Bodik CS 164 Lecture 6

45

· Recall the grammar

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \varepsilon$

- Where in the line of Y we put $Y \rightarrow T$?
 - In the lines of First(*T) = { * }
- Where in the line of Y we put $Y \rightarrow \varepsilon$?
 - In the lines of Follow(Y) = $\{\$, +, \}$

46

Prof. Bodik CS 164 Lecture 6

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well
- Most programming language grammars are not LL(1)
- · There are tools that build LL(1) tables

Prof. Bodik CS 164 Lecture 6

47

Top-Down Parsing. Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- The leaves at any point form a string βΑγ
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

int * int + int

Prof. Bodik CS 164 Lecture 6

50

Top-Down Parsing. Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

Prof. Bodik CS 164 Lecture 6

52

Top-Down Parsing. Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

int * int + int

Prof, Bodik CS 164 Lecture 6

49

Top-Down Parsing. Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

Prof. Bodik CS 164 Lecture 6

51

Predictive Parsing. Review.

- · A predictive parser is described by a table
 - For each non-terminal A and for each token b we specify a production A $\rightarrow \alpha$
 - When trying to expand A we use A $\rightarrow \alpha$ if b follows next
- · Once we have the table
 - The parsing algorithm is simple and fast
 - No backtracking is necessary

Prof. Bodik CS 164 Lecture 6