Building a Parser IIT

CS164
3:30-5:00 TT
10 Evans

Prof. Bodik CS 164 Lecture 6 1

Overview

+ Finish recursive descent parser
- when it breaks down and how to fix it
- eliminating left recursion
- reordering productions
* Predictive parsers (aka LL(1) parsers)
- computing FIRST, FOLLOW

- table-driven, stack-manipulating version of the
parser

Prof. Bodik CS 164 Lecture 6

Review: grammar for arithmetic expressions

+ Simple arithmetic expressions:
E-n|id| (E)| E+E| E*E

* Some elements of this language:
- id
- n

(n)

- n+id

id*(id+id)

Prof. Bodik CS 164 Lecture 6

Review: derivation

Grammar:E-n | id | (E) | E+E | E*E
- a derivation:

E rewrite E with (E)
(E) rewrite E with n
(n) this is the final string of terminals

+ another derivation (written more concisely):
E-(E)-(E*E)->(E+E*E)->(n+E*E)~>(n+id*E)
> (n+id*id)
+ this is left-most derivation (remember it)
- always expand the left-most non-terminal
- can you guess what's right-most derivation?

Prof. Bodik CS 164 Lecture 6

Recursive Descent Parsing

+ Consider the grammar
E-T+E|T
T—int |int*T|(E)
* Token stream is: int5 * int,
+ Start with top-level non-terminal E

* Try the rules for E in order

Prof. Bodik CS 164 Lecture 6

Recursive-Descent Parsing

+ Parsing: given a string of tokens t; 1, ... t,, find
its parse tree

+ Recursive-descent parsing: Try all the
productions exhaustively

- At a given moment the fringe of the parse tree is:
Tt B A

- Try all the productions for A: if A~ BCisa
production, the new fringe is t; 1, .. , BC ..

- Backtrack when the fringe doesn't match the string
- Stop when there are no more non-terminals

Prof. Bodik CS 164 Lecture 6

When Recursive Descent Does Not Work

+ Consider a production S — S a:
- In the process of parsing S we try the above rule
- What goes wrong?
© Afix?
- S must have a non-recursive production, say S — b
- expand this production before you expand S - S a
* Problems remain
- performance (steps needed to parse “"baaaaa”)
- fermination (parse the error input “c")

Prof. Bodik CS 164 Lecture 6

Solutions

+ First, restrict backtracking

- backtrack just enough to produce a sufficiently
powerful r.d. parser

+ Second, eliminate left recursion
- transformation that produces a different grammar
- the new grammar generates same strings
- but does it give us same parse tree as old grammar?

* Let's see the restricted r.d. parser first

Prof. Bodik CS 164 Lecture 6

A Recursive Descent Parser (1)

* Define boolean functions that check the token
string for a match of
- A given token terminal
bool term(TOKEN tok) { return in[next++] == tok; }
- A given production of S (the nth)
bool 5,() { .. }
- Any production of S:
bool SO { ... }

* These functions advance next

Prof. Bodik CS 164 Lecture 6

A Recursive Descent Parser (2)

* For productionE — T+ E
bool E;() { return T() && term(PLUS) && E(): }
« For productionE —> T
bool E,() { return T(): }
+ For all productions of E (with backtracking)
bool E() {
int save = next;
return (next = save, E;())
|| (next = save, E,()); }

Prof. Bodik CS 164 Lecture 6

A Recursive Descent Parser (3)

+ Functions for non-terminal T

bool Ty() { return term(OPEN) && E() && term(CLOSE); }
bool T,() { return term(INT) && term(TIMES) && T(); }
bool T;3() { return term(INT); }

bool T() {
int save = next;
return (next = save, Ty())
|| (next = save, T,())
|| (next = save, T50):}

Prof. Bodik CS 164 Lecture 6

Recursive Descent Parsing. Notes.

+ To start the parser
- Initialize next to point to first token
- Invoke E()

+ Notice how this simulates our backtracking
example from lecture

+ Easy to implement by hand
- Predictive parsing is more efficient

Prof. Bodik CS 164 Lecture 6

Now back to left-recursive grammars

* Does this style of r.d. parser work for our
left-recursive grammar?
- the grammar: S > Sa|b

- what happens when S — S a is expanded first?

- what happens when S — b is expanded first?

Prof. Bodik CS 164 Lecture 6

Left-recursive grammars

+ A left-recursive grammar has a non-terminal S
S —*Sao. for some o
- Recursive descent does not work in such cases
- It goes into an « loop
* Notes:

- o a shorthand for any string of terminals, non-
terminals
- symbol —* is a shorthand for “can be derived in one
or more steps":
*+ S Sa issameas S —» .. - Sa

Prof. Bodik CS 164 Lecture 6

Elimination of Left Recursion

+ Consider the left-recursive grammar
S>Salp

* S generates all strings starting with a 8 and
followed by a number of o

+ Can rewrite using right-recursion
S—>B S
S >o S'|e

Prof. Bodik CS 164 Lecture 6

Elimination of Left-Recursion. Example

+ Consider the grammar
$-1|S0 (B=1landa=0)

can be rewritten as
S-18
S$-08|¢

Prof, Bodik CS 164 Lecture 6

More Elimination of Left-Recursion

General Left Recursion

+ Ingeneral
S>So|.lSaylByl.lBn
* All strings derived from S start with one of
B1,...Bm and continue with several instances of
Ol e Oy
+ Rewrite as
s_)B1s’ | I Bms‘
S—>a;S|.la,S|¢

Prof. Bodik CS 164 Lecture 6

* The grammar
S>Aald
A—>SB
is also left-recursive because

S >* S Ba

+ This left-recursion can also be eliminated
+ See [ASU], Section 4.3 for general algorithm

Prof. Bodik CS 164 Lecture 6

Summary of Recursive Descent

Motivation

+ simple parsing strategy
- left-recursion must be eliminated first
- .. but that can be done automatically
+ unpopular because of backtracking
- thought to be too inefficient
- in practice, backtracking is (sufficiently) eliminated by
restricting the grammar
+ so, it's good enough for small languages
- careful, though: order of productions important even after
left-recursion eliminated
- fry to reverse the order of E > T+E | T
- what goes wrong?

Prof. Bodik CS 164 Lecture 6

+ Wouldn't it be nice if
- the r.d. parser just knew which production to
expand next?
- Idea: replace
return (next = save, E1()) || (next = save, E2()); }
- with
switch (something) {
case L1: return E1();

case L2: return E2();
otherwise: print "syntax error”;

}
- what's “"something”, L1, L2?
- the parser will do lookahead (look at next token)

22
Prof. Bodik CS 164 Lecture 6

Predictive Parsers

LL(1) Languages

+ Like recursive-descent but parser can
“predict” which production to use
- By looking at the next few tokens
- No backtracking
+ Predictive parsers accept LL(k) grammars
- L means "“left-to-right" scan of input
- L means "leftmost derivation”
- k means “predict based on k tokens of lookahead”

+ In practice, LL(1) is used

Prof. Bodik CS 164 Lecture 6

« In recursive-descent, for each non-terminal
and input token there may be a choice of
production

+ LL(1) means that for each non-terminal and
token there is only one production that could
lead to success

+ Can be specified as a 2D table

- One dimension for current non-terminal to expand
- One dimension for next token
- A table entry contains one production

Prof. Bodik CS 164 Lecture 6

Predictive Parsing and Left Factoring

Left-Factoring Example

* Recall the grammar
E->T+E|T
T—int |int*T|(E)

+ Impossible to predict because
- For T two productions start with int
- For E it is not clear how to predict

* A grammar must be left-factored before use
predictive parsing

Prof. Bodik CS 164 Lecture 6

* Recall the grammar
E->T+E|T
T—int |int*T|(E)

+ Factor out common prefixes of productions
E->TX
X—>+E|e
TS (E)|intY
Yo>*T|e

27
Prof. Bodik CS 164 Lecture 6

LL(1) parser

+ to simplify things, instead of
switch (something) {
case L1: return E1():
case L2: return E2();
otherwise: print "syntax error”;

}
+ we'll use a LL(1) table and a parse stack
- the LL(1) table will replace the switch
- the parse stack will replace the call stack

Prof. Bodik CS 164 Lecture 6

LL(1) Parsing Table Example

+ Left-factored grammar

E->TX X—>+E|e
T (E)|inty Yo*T|e
*+ The LL(1) parsing table:
int * + () $
T intY (E)
E TX TX
X +E € €
Y *T € g g

Prof. Bodik CS 164 Lecture 6

LL(1) Parsing Table Example (Cont.)

+ Consider the [E, int] entry

- "When current non-terminal is E and next input is
int, use production E—» T X

- This production can generate an int in the first
place

+ Consider the [Y,+] entry

- "When current non-terminal is Y and current token
is +, get rid of Y"

- We'll see later why this is so

Prof. Bodik CS 164 Lecture 6

LL(1) Parsing Tables. Errors

- Blank entries indicate error situations
- Consider the [E *] entry

- “There is no way to derive a string starting with *
from non-terminal E”

Prof. Bodik CS 164 Lecture 6

Using Parsing Tables

+ Method similar to recursive descent, except
- For each non-terminal S
- We look at the next token a
- And choose the production shown at [S,a]
+ We use a stack to keep track of pending non-
terminals
+ We reject when we encounter an error state

+ We accept when we encounter end-of-input

Prof. Bodik CS 164 Lecture 6

LL(1) Parsing Algorithm

initialize stack = <§ §> and next (pointer to tokens)
repeat
case stack of
<X, resb :ifl[X,"nexq = V,.V,
then stack << V,.. Y, rest ;
else error();
<t resb :ift== "next++
then stack « < rest ;
else error () ;
until stack == < >

Prof. Bodik CS 164 Lecture 6

LL(1) Parsing Example

Stack Input Action
E$ int * int $ TX
TX$ int * int $ int Y
intYX$ int * int $ terminal
YX$ *int$ *T
*TX$ *int $ terminal
TX$ int $ int Y
intYX$ int $ terminal
YX$ $ €

X$ $ €

$ $ ACCEPT

35
Prof. Bodik CS 164 Lecture 6

Constructing Parsing Tables

* LL(1) languages are those defined by a parsing
table for the LL(1) algorithm

* No table entry can be multiply defined

+ We want to generate parsing tables from CFG

Prof. Bodik CS 164 Lecture 6

Constructing Predictive Parsing Tables

- Consider the state S -* BAy
- With b the next token
- Trying to match pbs
There are two possibilities:
1. b belongs to an expansion of A

Any A - a can be used if b can start a string
derived from a

In this case we say that b € First(a)

Or...

Prof. Bodik CS 164 Lecture 6

Constructing Predictive Parsing Tables (Cont.)

2. b does not belong to an expansion of A

- The expansion of A is empty and b belongs to an
expansion of y

- Means that b can appear after A in a derivation of
the form S -* BAbw

- We say that b € Follow(A) in this case
- What productions can we use in this case?
+ Any A - a can be used if o can expand to ¢

+ We say that ¢ € First(A) in this case

Prof. Bodik CS 164 Lecture 6

First Sets. Example

* Recall the grammar

E->TX X—>+E|e
T (E)|inty Yo>*T|e
* First sets
First(()={(} First(T) = {int, (}

First())={)} First(E) = {int, (}
First(int) = {int} First(X)= {+ ¢}
First(+)={+) First(Y)= {*, ¢}
First(*)= {*}

40
Prof. Bodik CS 164 Lecture 6

Computing First Sets

Definition First(X)={b | X 5" ba} U {e | X 5" &}
1. First(b)={b}

2. For all productions X — A; ... A,
Add First(A,) - {€} to First(X). Stop if ¢ First(A,)
Add First(A,) - {c} to First(X). Stop if e¢ First(A;)

Add First(A,) - {g} to First(X). Stop if ez First(A,)
Add ¢ to First(X)
3. Repeat step 2 until no First set grows

41
Prof, Bodik CS 164 Lecture 6

Follow Sets. Example

* Recall the grammar

E->TX X—>+E]|e
T (E)|inty Yo*T|e
* Follow sets

Follow(+) = {int,(} Follow(*)={int, (}
Follow(() ={int,(} Follow(E)={), $}
Follow(X)={$.)} Follow(T)={+,), $}
Follow())={+,).$} Follow(Y)={+),$}
Follow(int) = {*, +,), $}

Prof. Bodik CS 164 Lecture 6

Computing Follow Sets

Definition Follow(X)={b | S >"BXb 5}
1. Compute the First sets for all non-terminals first
2. Add $ to Follow(S) (if S is the start non-terminal)

3. Forall productions ¥ — .. X A; .. A,
- Add First(A,) - {g} to Follow(X). Stop if ez First(A,)
Add First(A;) - {c} to Follow(X). Stop if e¢ First(A,)

Add First(A,) - (£} to Follow(X). Stop if ¢ First(A,)
Add Follow(Y) to Follow(X)

4. Repeat step 3 until no Follow set grows

43
Prof. Bodik CS 164 Lecture 6

Constructing LL(1) Parsing Tables

+ Construct a parsing table T for CFG G

+ For each production A —a in G do:
- For each terminal b € First(a) do
- T[A,b] = o
- If a »" ¢, for each b Follow(A) do
* T[A,b]=a
- If a->"cand $ < Follow(A) do
* T[A, $]=a

45
Prof. Bodik CS 164 Lecture 6

Constructing LL(1) Tables. Example

+ Recall the grammar
E->TX X—>+E|e
T—>(E)|intyY Yo*T|e
+ Where in the line of Y we putY — * T?
- In the lines of First(*T)={*}

+ Where in the line of Y we put Y - ¢ ?
- In the lines of Follow(Y)={$,+,)}

46
Prof. Bodik CS 164 Lecture 6

Notes on LL(1) Parsing Tables

+ If any entry is multiply defined then G is not
LL(1)
- If G is ambiguous
- If G is left recursive
- If G is not left-factored
- And in other cases as well

+ Most programming language grammars are not
LL(1)

+ There are tools that build LL(1) tables

47
Prof. Bodik CS 164 Lecture 6

Top-Down Parsing. Review

+ Top-down parsing expands a parse tree from
the start symbol to the leaves
- Always expand the leftmost non-terminal
E

/v‘E

T +

int * int + int

Prof. Bodik CS 164 Lecture 6

49

Top-Down Parsing. Review

Top-Down Parsing. Review

* Top-down parsing expands a parse tree from
the start symbol to the leaves
- Always expand the leftmost non-terminal

* The leaves at any point
/v‘E form a string BAy

- B contains only terminals
T - The input string is fbd

- The prefix matches

- The next token is b

50
Prof. Bodik CS 164 Lecture 6

+ Top-down parsing expands a parse tree from
the start symbol to the leaves
- Always expand the leftmost non-terminal

* The leaves at any point
/v‘e

T N form a string BAy
/[\ | - B contains only terminals
e T - The input string is pbd
| - The prefix B matches
int - The next token is b

int * int + int

Prof. Bodik CS 164 Lecture 6

Top-Down Parsing. Review

Predictive Parsing. Review.

* Top-down parsing expands a parse tree from
the start symbol to the leaves

- Always expand the leftmost non-terminal
E

/v&_ + The leaves at any point

T N form a string Ay
- P contains only terminals
it » T T - The input string is pbs
| - The prefix p matches
int int - The next token is b

int * int + int

Prof. Bodik CS 164 Lecture 6

+ A predictive parser is described by a table
- For each non-terminal A and for each token b we
specify a production A » o
- When trying to expand A we use A - o if b follows
next

+ Once we have the table

- The parsing algorithm is simple and fast
- No backtracking is necessary

Prof. Bodik CS 164 Lecture 6

