Lecture #13: Type Inference and Unification

Administrivia.

e Deadline on project #1 was pushed 24 hours to compensate for SVN
glitch.

e Be sure to check your instructional mail accounts!
e Project #2 spec and files released.
e Review session Sunday at 1700 (place TBA).

e Reader containing notes and lecture slides will be at Vick Copy (cor-
ner Euclid and Hearst) this weekend.

Last modified: Thu Mar 12 16:16:23 2009 CS164: Lecture #13 1

Typing In the Language ML

e Examples from the language ML:

fun map £ [] = []

| map £ (a :: y) = (f a) :: (map £ y)
fun reduce f init [] = init

| reduce f init (a :: y) = reduce f (f init a) y
fun count [] = 0

| count (. :: y) =1+ count y
fun addt [] =0

addt ((a,_,c) :: y) = (atc) :: addt y

e Despite lack of explicit types here, this language is statically typed!

e Compiler will reject the calls map 3 [1, 2] and reduce (op +) []
(3, 4, 5].

e Does this by deducing types from their uses.

Last modified: Thu Mar 12 16:16:23 2009 CS164: Lecture #13 2

Type Inference

e Insimple case:

fun add [] =0
| add (a :: L) =a + add L

compiler deduces that add has type int list — int.

e Uses facts that (a) O is an int, (b) [] and a: :L are lists (: : is cons),
(c) + yields int.

e More interesting case:

fun count [] =0
| count (. :: y) =1+ count y

(_ means “don't care” or “wildcard"). In this case, compiler deduces
that count has type @ list — int.

e Here, o is a type parameter (we say that count is polymorphic).

Last modified: Thu Mar 12 16:16:23 2009 CS164: Lecture #13 3

Doing Type Inference

e Given a definition such as

fun add [] =0
| add (a :: L) =a+ add L

e First give each named entity here an unbound type parameter as its
type: add : o, a: 3, L : 7.

e Now use the type rules of the language to give types to everything
and fo relate the types:

-0:int, [IJ: ¢ list.

- Since add is function and applies to int, must be that o = ¢ — &,
and . = § list

- etc.

e Gives us a large set of type equations, which can be solved fo give
types.

e Solving involves pattern matching, known formally as type unifica-
tion.

Last modified: Thu Mar 12 16:16:23 2009 CS164: Lecture #13 4

Type Expressions

e For this lecture, a type expression can be
- A primitive type (int, bool);
- A type variable (today we'll use ML notation: ‘a,'b, 'c, etc.);
- The type constructor T' list, where T is a type expression;
- A function type D — C, where D and C are type expressions.

e Will formulate our problems as systems of type equations between
pairs of type expressions.

e Need to find the substitution

Last modified: Thu Mar 12 16:16:23 2009 CS164: Lecture #13 5

Solving Simple Type Equations

e Simple example: solve
’a list = int list
e Easy: ’a = int.
e How about this:
’alist =’blist list; ’b list = int list
e Also easy: ’a = int list; ’b = int.
e On the other hand:
’alist="b— ’b
is unsolvable: lists are not functions.
e Also, if we require finite solutions, then
’a="'blist;’b="alist

is unsolvable.

Last modified: Thu Mar 12 16:16:23 2009 CS164: Lecture #13 6

Most General Solutions

e Rather trickier:
’a list=’b list list

o Clearly, there are lots of solutions to this: e.g,
’a=1int list; ’b=1int
’a = (int — int) list; ’b=int — int
etc.

e But prefer a most general solution that will be compatible with any
possible solution.

e Any substitution for >a must be some kind of list, and ’b must be
the type of element in ’a, but otherwise, no constraints

e Leads to solution
’a="blist
where b remains a free type variable.

e In general, our solutions look like a bunch of equations ’a; = T;,
where the T; are type expressions and none of the ’a; appear in any
of the T's.

Last modified: Thu Mar 12 16:16:23 2009 CS164: Lecture #13 7

Finding Most-General Solution by Unification

e To unify two type expressions is to find substitutions for all type
variables that make the expressions identical.

e The set of substitutions is called a unifier.

e Represent substitutions by giving each type variable, ’7, a binding
to some type expression.

e Initially, each variable is unbound.

Last modified: Thu Mar 12 16:16:23 2009 CS164: Lecture #13 8

Unification Algorithm

e For any type expression, define

. | binding(7"), if T"is a type variable bound o 7"
binding(T’) = T, otherwise

e Now proceed recursively:

unify (T1,T2):

T1 = binding(T1); T2 = binding(T2);

if T1 = T2: return true;

if T1 is a type variable and does not appear in T2:
bind T1 to T2; return true

if T2 is a type variable and does not appear in T1:
bind T2 to T1l; return true

if T1 and T2 are S1 list and S2 list: return unify (S81,S2)

if T1 and T2 are D1— C1 and D2— C2:

return unify(D1,D2) and unify(C1,C2)
else: return false

Last modified: Thu Mar 12 16:16:23 2009 CS164: Lecture #13 9

Example of Unification

e Try to solve

’b list= ’a list; ’a— ’b="’c;
’¢ — bool= (bool— bool) — bool

e We unify both sides of each equation (in any order), keeping the
bindings from one unification to the next.

’a: bool Unify ’b 1list, ’a 1list:
Unify ’b, ’a
’b: ’a Unify ’a— ’b, ’c

bool Unify ’c — bool, (bool — bool) — bool

Unify ’c, bool — bool:
’a — b Unify ’a — ’b, bool — bool:
bool — bool Unify ’a, bool
Unify ’b, bool:
Unify bool, bool
Unify bool, bool

Last modified: Thu Mar 12 16:16:23 2009 CS164: Lecture #13 10

Some Type Rules (reprise)

Construct Type Conditions
Integer literal int
’a list
‘a L: 'alist
‘a list L: 'alist
int Eyint, By int
‘alist | Ey:'a, By 'alist
bool Ei'a, By 'a
bool Eii'a, By 'a
if F, then E; else E5 fi|'a Ey: bool, Es: 'a, By 'a
FE, Ey ‘b lfﬁlﬂ —élb,fbilﬂ
def f x1 ...xn = E x1:'ay, ..., xn: ‘a, E'ay,
fi'a; —...—'a, — 'a.

Last modified: Thu Mar 12 16:16:23 2009 CS164: Lecture #13 11

Using the Type Rules

e Apply these rules to a program to get a bunch of Conditions.

e Whenever two Conditions ascribe a type to the same expression,
equate those types.

e Solve the resulting equations.

Last modified: Thu Mar 12 16:16:23 2009 CS164: Lecture #13 12

Aside: Currying Example

e Writing
def f x L = if L = [] then [] else

def sqr x = x*Xx; if x != hd(L) then f x (t1 L)

else x :: f x (t1 L) fi
means essentially that sqr is defined to have the value A x. x*x. ti

e To get more than one argument, write L]
e Let's initially use ’£, ’x, ’L, etc. as the fresh type variables.

def f xy =x + y; e Using the rules then generates equations like this:

and £ will have the value A x. X\ y. =x+y f = — ’al — a2 def rule
'L list = rule, [] rule

'L = list hd rule,
©50,f23=(f23=0Oy. 2+y) (38 =5 ’x = ’ad I= rule

e Zounds! It's the CS61A substitution model! 'x = a0 call rule
. ’L = ’ab list tl rule
e This trick of turning multi-argument functions into one-argument 'al = ’ab list t1 rule, call rule

functions is called currying (after Haskell Curry).

e It's type will be int — int — int (Note: — is right associative).

Last modified: Thu Mar 12 16:16:23 2009 CS164: Lecture #1313 Last modified: Thu Mar 12 16:16:23 2009 CS164: Lecture #13 14

	Lecture #13: Type Inference and Unification
	Typing In the Language ML
	Type Inference
	Doing Type Inference
	Type Expressions
	Solving Simple Type Equations
	Most General Solutions
	Finding Most-General Solution by Unification
	Unification Algorithm
	Example of Unification
	Some Type Rules (reprise)
	Using the Type Rules
	Aside: Currying
	Example

