Lecture \#13: Type Inference and Unification

Administrivia.

- Deadline on project \#1 was pushed 24 hours to compensate for SVN glitch.
- Be sure to check your instructional mail accounts!
- Project \#2 spec and files released.
- Review session Sunday at 1700 (place TBA).
- Reader containing notes and lecture slides will be at Vick Copy (corner Euclid and Hearst) this weekend.

Type Inference

- In simple case:

```
fun add [] = 0
| add (a :: L) = a + add L
```

compiler deduces that add has type int list \rightarrow int.

- Uses facts that (a) 0 is an int, (b) [] and a: :L are lists (: : is cons), (c) + yields int.
- More interesting case:

```
fun count [] = 0
    | count (_ :: y) = 1 + count y
```

(_ means "don'† care" or "wildcard"). In this case, compiler deduces that count has type α list \rightarrow int.

- Here, α is a type parameter (we say that count is polymorphic).

Typing In the Language ML

- Examples from the language ML:

```
fun map f [] = []
| map \(f(a:: \quad y)=(f a)::(m a p ~ f)\)
fun reduce \(f\) init [] = init
| reduce \(f\) init ( \(a\) : : \(y\) ) = reduce \(f\) ( \(f\) init \(a\) ) \(y\)
fun count [] = 0
| count (_ : : y) = \(1+\) count \(y\)
fun addt [] = 0
    addt \(((a,-, c):: y)=(a+c):: ~ a d d t y\)
```

- Despite lack of explicit types here, this language is statically typed!
- Compiler will reject the calls map 3 [1, 2] and reduce (op +) [] [3, 4, 5].
- Does this by deducing types from their uses.

Doing Type Inference

- Given a definition such as

```
fun add [] = 0
    | add (a :: L) = a + add L
```

- First give each named entity here an unbound type parameter as its type: add: $\alpha, a: \beta, L: \gamma$.
- Now use the type rules of the language to give types to everything and to relate the types:
- O: int, []: δ list.
- Since add is function and applies to int, must be that $\alpha=\iota \rightarrow \kappa$, and $\iota=\delta$ list
- etc.
- Gives us a large set of type equations, which can be solved to give types.
- Solving involves pattern matching, known formally as type unification.

Last modified: Thu Mar 12 16:16:23 2009

Type Expressions

- For this lecture, a type expression can be
- A primitive type (int, bool);
- A type variable (today we'll use ML notation: 'a, 'b, 'c1, etc.);
- The type constructor T list, where T is a type expression;
- A function type $D \rightarrow C$, where D and C are type expressions.
- Will formulate our problems as systems of type equations between pairs of type expressions.
- Need to find the substitution

Most General Solutions

- Rather trickier:
'a list= 'b list list
- Clearly, there are lots of solutions to this: e.g,

$$
\begin{aligned}
& \text { 'a }=\text { int list; } \quad \text { ' } \mathrm{b}=\text { int } \\
& \text { 'a }=(\text { int } \rightarrow \text { int }) \text { list; ' } \mathrm{b}=\text { int } \rightarrow \text { int } \\
& \text { etc. }
\end{aligned}
$$

- But prefer a most general solution that will be compatible with any possible solution.
- Any substitution for 'a must be some kind of list, and 'b must be the type of element in 'a, but otherwise, no constraints
- Leads to solution
'a = 'b list
where 'b remains a free type variable.
- In general, our solutions look like a bunch of equations ' $\mathrm{a}_{i}=T_{i}$, where the T_{i} are type expressions and none of the ' a_{i} appear in any of the T's.
Last modified: Thu Mar 12 16:16:23 2009

Solving Simple Type Equations

- Simple example: solve

$$
\text { 'a list }=\text { int list }
$$

- Easy: 'a = int.
- How about this:
'a list $=$ 'b list list; 'blist $=$ int list
- Also easy: ' $\mathrm{a}=$ int list; ' $\mathrm{b}=$ int.
- On the other hand:

$$
\text { 'a list }=\text { 'b } \rightarrow \text { 'b }
$$

is unsolvable: lists are not functions.

- Also, if we require finite solutions, then
'a = 'b list; 'b = 'a list
is unsolvable.

Finding Most-General Solution by Unification

- To unify two type expressions is to find substitutions for all type variables that make the expressions identical.
- The set of substitutions is called a unifier.
- Represent substitutions by giving each type variable, ' τ, a binding to some type expression.
- Initially, each variable is unbound.

Unification Algorithm

- For any type expression, define
binding $(T)= \begin{cases}\operatorname{binding}\left(T^{\prime}\right), & \text { if } T \text { is a type variable bound to } T^{\prime} \\ T, & \text { otherwise }\end{cases}$
- Now proceed recursively:

```
unify (T1,T2):
    T1 = binding(T1); T2 = binding(T2);
    if T1 = T2: return true;
    if T1 is a type variable and does not appear in T2:
        bind T1 to T2; return true
    if T2 is a type variable and does not appear in T1:
        bind T2 to T1; return true
    if T1 and T2 are S1 list and S2 list: return unify (S1,S2)
    if T1 and T2 are D1 }->\textrm{C}1\mathrm{ and D2 }->\mathrm{ C2:
        return unify(D1,D2) and unify(C1,C2)
    else: return false
```


Some Type Rules (reprise)

Construct	Type	Conditions
Integer literal []	$\begin{aligned} & \text { int } \\ & \text { 'a list } \end{aligned}$	
hd (L)	'a	L: 'a list
\dagger (L)	'a list	L: 'a list
$E_{1}+E_{2}$	int	E_{1} : int, E_{2} : int
$E_{1}:: E_{2}$	'a list	E_{1} : 'a, E_{2} : 'a list
$E_{1}=E_{2}$	bool	$E_{1}: ~ ' a, E_{2}$: 'a
$E_{1}!=E_{2}$	bool	$E_{1}:$ 'a, E_{2} : 'a
if E_{1} then E_{2} else $E_{3} \mathrm{fi}$	'a	E_{1} : bool, E_{2} : 'a, E_{3} : 'a
$E_{1} E_{2}$	'b	$E_{1}: ~ ' \mathrm{a} \rightarrow \mathrm{b}, E_{2}$: 'a
def f x1 ...xn $=\mathrm{E}$		$\begin{aligned} & \text { x1: ' } \mathrm{a}_{1}, \ldots, \text { xn: ' } \mathrm{a}_{n} \mathrm{E}: \text { ' }_{0}, \\ & \mathrm{f}: ~ ' \mathrm{a}_{1} \rightarrow \ldots \rightarrow \text {, } \mathrm{a}_{n} \rightarrow{ }^{\prime} \mathrm{a}_{0} . \end{aligned}$

Example of Unification

- Try to solve
'b list= 'a list;' $\mathrm{a} \rightarrow$ 'b = 'c;
${ }^{\prime} \mathrm{c} \rightarrow$ bool $=$ (bool \rightarrow bool) \rightarrow bool
- We unify both sides of each equation (in any order), keeping the bindings from one unification to the next.

```
'a: bool Unify 'b list, 'a list:
    Unify 'b, 'a
'b: 'a
    Unify 'a-> 'b, 'c
        bool Unify 'c }->\mathrm{ bool, (bool }->\mathrm{ bool) }->\mathrm{ bool
    Unify 'c, bool }->\mathrm{ bool:
        Unify 'a }->\mathrm{ 'b, bool }->\mathrm{ bool:
'c: 'a }->\mathrm{ 'b
        bool }->\mathrm{ bool
```


Using the Type Rules

- Apply these rules to a program to get a bunch of Conditions.
- Whenever two Conditions ascribe a type to the same expression, equate those types.
- Solve the resulting equations.

Aside: Currying

- Writing
def sqr $\mathrm{x}=\mathrm{x} * \mathrm{x}$;
means essentially that sqr is defined to have the value $\lambda \mathrm{x} . \mathrm{x} * \mathrm{x}$.
- To get more than one argument, write

$$
\operatorname{def} f x y=x+y ;
$$

and f will have the value $\lambda \mathrm{x} . \lambda \mathrm{y} . \quad \mathrm{x}+\mathrm{y}$

- It's type will be int \rightarrow int \rightarrow int (Note: \rightarrow is right associative).
- So, f 23 = (f 2) 3 = ($\lambda \mathrm{y}$. $2+\mathrm{y}$) (3) $=5$
- Zounds! It's the CS61A substitution mode!!
- This trick of turning multi-argument functions into one-argument functions is called currying (after Haskell Curry).

Example

```
def f x L = if L = [] then [] else
    if x != hd(L) then f x (tl L)
                                    else x :: f x (tl L) fi
    fi
```

- Let's initially use ' f, ' x, 'L, etc. as the fresh type variables.
- Using the rules then generates equations like this:

'f $=$ 'a0 \rightarrow 'a1 \rightarrow 'a2	\# def rule
'L $=$ 'a3 list	\# = rule, [] rule
'L $=$ 'a4 list	\# hd rule,
'x $=$ 'a4	\# ! = rule
'x $=$ 'a0	\# call rule
'L $=$ 'a5 list	\# tl rule
'a1 $=$ 'a5 list	\# tl rule, call rule

${ }^{\prime} \mathrm{f}={ }^{\prime} \mathrm{a0} \rightarrow$ 'a1 $\rightarrow \quad$ 'a2
\# def rule
, L , ,
\# hd rule,
\# ! = rule
\# call rule
\# tl rule
\# tl rule, call rule

