
Lecture #16: Introduction to Runtime Organization

Administrivia

• Homework for next Friday will be posted tomorrow.

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 1

Status

• Lexical analysis

– Produces tokens

– Detects & eliminates illegal tokens

• Parsing

– Produces trees

– Detects & eliminates ill-formed parse trees

• Static semantic analysis

– Produces decorated tree with additional information attached

– Detects & eliminates remaining static errors

• Next are the dynamic “back-end” phases: ⇐= we are here

– Code generation (at various semantic levels)

– Optimization

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 2

Run-time environments

Before discussing code generation, we need to understand what we are
trying to generate.

• We’ll use the term virtual machine to refer to the compiler’s target.

• Can be just a bare hardware architecture (small embedded systems).

• Can be an interpreter, as for Java, or an interpreter that does ad-
ditional compilation at execution, as in modern Java JITs

• For now, we’ll stick to hardware + conventions for using it (the API:
application programmer’s interface) + some runtime-support library.

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 3

Code Generation Goals and Considerations

• Correctness: execution of generated code must be consistent with
the programs’ specified dynamic semantics.

• In general, however, these semantics do not completely specify be-
havior, often to allow compiler to accomplish other goals, such as. . .

• Speed: produce code that executes as quickly as possible, or reliably
meets certain timing constraints (as in real-time systems).

• Size: minimize size of generated program or of runtime data struc-
tures.

• Speed and size optimization can be conflicting goals. Why?

• Compilation speed: especially during development or when using JITs.

• Most complications in code generation come from trying to be fast
as well as correct, because this requires attention to special cases.

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 4

Subgoals and Constraints

• Subgoals for improving speed and size:

– Minimize instruction counts.

– Keep data structure static, known at compilation (e.g., known con-
stant offsets to fields). Contrast Java and Python.

– Maximize use of registers (“top of the memory hierarchy”).

• Subgoals for improving compilation speed:

– Try to keep analyses as local as possible (single statement, block,
procedure), because their compilation-time cost tends to be non-
linear.

– Simplify assumptions about control flow: procedure calls “always”
return, statements generally execute in sequence. (Where are
these violated?)

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 5

Activations and Lifetimes (Extents)

• An invocation of procedure P is an activation of P .

• The lifetime of an activation of P is all the steps to execute P ,
including all the steps in procedures P calls.

• The lifetime (extent) of a variable is the portion of execution dur-
ing which that variable exists (whether or not the code currently
executing can reference it).

• Lifetime is a dynamic (run-time) concept, as opposed to scope, which
is static.

• Lifetimes of procedure activations and local variables properly nest
(in a single thread), suggesting a stack data structure for maintain-
ing their runtime state.

• Other variables have extents that are not coordinated with proce-
dure calls and returns.

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 6

Memory Layout

Characteristics of procedure activations and variables give rise to the
following typical data layout for a (single-threaded) program:

Instructions
(“text segment(s)”)

Static data
(“data segment(s)”)

Dynamic data
(“heap”)

Execution stack
(“stack segment”)

Lowest memory address

Highest memory address

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 7

Activation Records

• The information needed to manage one procedure activation is called
an activation record (AR) or (stack) frame.

• If procedure F (the caller) calls G (the callee, typically G’s activa-
tion record contains a mix of data about F and G:

– Return address to instructions in F .

– Dynamic link to the AR for F .

– Space to save registers needed by F .

– Space for G’s local variables.

– Information needed to find non-local variables needed by G.

– Temporary space for intermediate results, arguments to and re-
turn values from functions that G calls.

– Assorted machine status needed to restore F ’s context (signal
masks, floating-point unit parameters).

• Depending on architecture and compiler, registers typically hold part
of AR (at times), especially parameters, return values, locals, and
pointers to the current stack top and frame.

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 8

Calling Conventions

• Many variations are possible:

– Can rearrange order of frame elements.

– Can divide caller/callee responsibilities differently.

– Don’t need to use an array-like implementation of the stack: can
use a linked list of ARs.

• An organization is better if it improves execution speed or simplifies
code generation

• The compiler must determine, at compile-time, the layout of activa-
tion records and generate code that correctly accesses locations in
the activation record.

• Furthermore, it is common to compile procedures separately and
without access of each other’s details, which motivates the the im-
position of calling conventions.

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 9

Static Storage

• Here, “static storage” refers to variables whose extent is an entire
execution and whose size is typically fixed before execution.

• Not generally stored in an activation record, but assigned a fixed
address once.

• In C/C++ variables with file scope (declared static in C) and with
external linkage (“global”) are in static storage.

• Java’s “static” variables are an odd case: they don’t really fit this
picture (why?)

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 10

Heap Storage

• Variables whose extent is greater than that of the AR in which they
are created can’t be kept there:

Bar foo() { return new Bar(); }

• Call such storage dynamically allocated.

• Typically allocated out of an area called the heap (confusingly, not
the same as the heap used for priority qeues!)

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 11

Achieving Runtime Effects—Functions

• Language design and runtime design interact. Semantics of func-
tions make good example.

• Levels of function features:

1. Plain: no recursion, no nesting, fixed-sized data with size known
by compiler.

2. Add recursion.

3. Add variable-sized unboxed data.

4. Allow nesting of functions, up-level addressing.

5. Allow function values w/ properly nested accesses only.

6. Allow general closures.

7. Allow continuations.

• Tension between these effects and structure of machines:

– Machine languages typically only make it easy to access things at
addresses like R + C, where R is an address in a register and C

is a relatively small integer constant.

– Therefore, fixed offsets good, data-dependent offsets bad.

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 12

1: No recursion, no nesting, fixed-sized data

• Total amount of data is bounded, and there is only one instantiation
of a function at a time.

• So all variables, return addresses, and return values can go in fixed
locations.

• No stack needed at all.

• Characterized FORTRAN programs in the early days.

• In fact, can dispense with call instructions altogether: expand func-
tion calls in-line. E.g.,

def f (x):

x *= 42

y = 9 + x;

g (x, y)

f (3)

=⇒ becomes =⇒

x_1 = 3

x_1 *= 42

y_1 = 9 + x_1

g (x_1, y_1)

• However, program may get bigger than you want. Typically, one in-
lines only small, frequently executed functions.

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 13

1: Calling conventions

• If we don’t use function inlining, will need to save return address,
parameters.

• There are many options. Here’s one example, from the IBM 360, of
calling function F from G and passing values 3 and 4:

GArgs DS 2F Reserve 2 4-byte words of static storage */

...

ENTRY G

G ...

LA R1,GArgs Load Address of arguments into register 1

LA R0,3 Store 3 and 4 in GArgs+0 and GArgs+4

ST R0,GArgs

LA R0,4

ST R0,GArgs+4

BAL R14,F Call ("Branch and Link") to F, R14 gets return point

and F might contain

FRet DS F

ENTRY F

F ST R14,FRet Save return address

L R2,0(R1) Load first argument.

...

L R14,FRet Get return address

BR R14 Branch to it

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 14

2: Add recursion

• Now, total amount of data is un-
bounded, and several instantiations of
a function can be active simultaneously.

• Calls for some kind of expandable data
structure: a stack.

• However, variable sizes still fixed, so
size of each activation record (stack
frame) is fixed.

• All local-variable addresses and the
value of dynamic link are known offsets
from stack pointer, which is typically in
a register.

...

ra

f’s
locals

arguments
to g

ra

g’s
locals

arguments
to f

ra

f’s
locals

Top of stack

Base of
1st frame

fixed distance

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 15

2: Calling Sequence when Frame Size is Fixed

• So dynamic links not really needed.

• Suppose f calls g calls f , as at right.

• When called, the initial code of g (its
prologue) decrements the stack pointer
by the size of g’s activation record.

• g’s exit code (its epilogue):

– increments the stack pointer by this
same size,

– pops off the return address, and

– branches to address just popped.

...

ra

f’s
locals

arguments
to g

ra

g’s
locals

arguments
to f

ra

f’s
locals

Top of stack

Base of
1st frame

fixed distance

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 16

2: Calling sequence from ia32

C code:

int

f (int x, int y)

{

int s;

s = 1;

while (y > 0) {

s *= x;

y -= 1;

}

return s;

}

int

g(int q)

{

return f(q, 5);

}

Assembly excerpt (GNU operand order):

f: / Return address (RA) at SP, x at SP+4, y at SP+8

subl $4, %esp / Decrement SP to make space for s

movl $1, (%esp) / s = 1

.L2:

cmpl $0, 12(%esp) / compare 0 with y (at SP+12)

jle .L3

movl (%esp), %eax / tmp = s

imull 8(%esp), %eax / tmp *= x

movl %eax, (%esp) / s = tmp

leal 12(%esp), %eax / tmp = &y

decl (%eax) / *tmp -= 1

jmp .L2

.L3:

movl (%esp), %eax / return s in EAX

addl $4, %esp / Restore stack pointer so RA on top,

ret / then pop RA and return.

g: ...

movl 12(%esp), %eax / tmp = q

movl %eax, (%esp) / top of stack = q

call f / branch to f and push address of next.

next:

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 17

3: Add Variable-Sized Unboxed Data

• “Unboxed” means “not on heap.”

• Boxing allows all quantities on stack to
have fixed size.

• So Java implementations have fixed-
size stack frames.

• But does cost heap allocation, so
some languages also provide for placing
variable-sized data directly on stack
(“heap allocation on the stack”)

• alloca in C, e.g.

• Now we do need dynamic link (DL).

• But can still insure fixed offsets of
data from frame base (frame pointer)
using pointers.

• To right, f calls g, which has variable-
sized unboaxed array (see right).

...

ra
DL

f’s
locals

arguments
to g

ra
DL

local
pointer

other
locals

unboxed
storage

Top of stack

Frame pointer

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 18

Other Uses of the Dynamic Link

• Often use dynamic link even when size of AR is fixed.

• Allows use of same strategy for all ARs, simplifies code generation.

• Makes it easier to write general functions that unwind the stack
(i.e., pop ARs off, thus returning).

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 19

3: Calling sequence for the ia32

C code:

int

f (int x, int y)

{

int s;

s = 1;

while (y > 0) {

s *= x;

y -= 1;

}

return s;

}

int

g(int q)

{

return f(q, 5);

}

Assembly excerpt (GNU operand order):

f: / Return address (RA) at SP, x at SP+4, y at SP+8

pushl %ebp / Save old dynamic link.

movl %esp, %ebp / Set ebp to current frame base.

subl $4, %esp / Decrement SP to make space for s

movl $1, -4(%ebp) / s = 1

.L2:

cmpl $0, 12(%ebp) / compare 0 with y (at BP+12)

jle .L3

movl -4(%ebp), %eax / tmp = s

imull 8(%ebp), %eax / tmp *= x

movl %eax, -4(%ebp) / s = tmp

leal 12(%ebp), %eax / tmp = &y

decl (%eax) / *tmp -= 1

jmp .L2

.L3:

movl -4(%ebp), %eax / return s

leave / Restore %esp to %ebp+4 and %ebp to 0(%ebp)

ret

g: ...

movl 8(%ebp), %eax / tmp = q

movl %eax, (%esp) / top of stack = q

call f / branch to f and push address of next.

next:

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 20

4: Allow Nesting of Functions, Up-Level Addressing

• When functions can be nested, there
are three classes of variable:

a. Local to function.

b. Local to enclosing function.

c. Global

• Accessing (a) or (c) is easy. It’s (b)
that’s interesting.

• Consider (in Python):

def f ():

y = 42 # Local to f

def g (n, q):

if n == 0: return q+y

else: return g (n-1, q*2)

• Here, y can be any distance away from
top of stack.

f’s
frame

g’s
frame

g’s
frame

...

g’s
frame

Top of stack

Enclosing f

How far???

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 21

Static Links

• To overcome this problem, go
back to environment diagrams!

• Each diagram had a pointer to
lexically enclosing environment

• In Python example from last
slide, each ‘g’ frame contains a
pointer to the ‘f’ frame where
that ‘g’ was defined: the static
link (SL)

• To access local variable, use
frame-base pointer (or maybe
stack pointer).

• To access global, use absolute
address.

• To access local of nesting func-
tion, follow static link once per
difference in levels of nesting.

...

ra
DL
SL

f’s frame
ra
DL
SL

g’s frame
ra
DL
SL

g’s frame
ra
DL
SL

g’s frame
Top of stack

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 22

The Global Display

• Historically, first solution to nested function
problem used an array indexed by call level,
rather than static links.

def f0 ():

q = 42; g1 ()

def f1 ():

def f2 (): ... g2 () ...

def g2 (): ... g2 () ... g1 () ...

def g1 (): ... f1 () ...

• Each time we enter a function at lexical level k
(i.e., nested inside k functions), save pointer to
its frame base in DISPLAY[k]; restore on exit.

• Access variable at lexical level k through
DISPLAY[k].

• Relies heavily on scope rules and proper
function-call nesting

f0’s
frame

g1’s
frame

f1’s
frame

f1’s
frame

f2’s
frame

g2’s
frame

g2’s
frame

g1’s
frame

f0 0
g1 1
g2 2

DISPLAY

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 23

5: Allow Function Values, Properly Nested Access

• In C, C++, no function nesting.

• So all non-local variables are global, and have fixed addresses.

• Thus, to represent a variable whose value is a function, need only to
store the address of the function’s code.

• But when nested functions possible, function value must contain
more.

• When function is finally called, must be told what its static link is.

• Assume first that access is properly nested: variables accessed only
during lifetime of their frame.

• So can represent function with address of code + the address of
the frame that contains that function’s definition.

• It’s environment diagrams again!!

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 24

Function Value Representation

def f0 (x):

def f1 (y):

def f2 (z):

return x + y + z

print h1 (f2)

def h1 (g): g (3)

f1 (42)

• Call f0 from the main program;
look at the stack when f2 finally
is called (see right).

• When f2’s value (as a function)
is computed, current frame is
that of f1. That is stored in the
value passed to h1.

• Easy with static links; global dis-
play technique does not fare as
well [why?]

...

ra
DL
SL

f0’s frame
ra
DL
SL

f1’s frame
ra
DL
SL

h1’s frame
ra
DL
SL

f2’s frame
Top of stack

code for f2

Value of g (i.e., f2)

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 25

6: General Closures

• What happens when the frame
that a function value points to
goes away?

• If we used the previous repre-
sentation (#5), we’d get a dan-
gling pointer in this case:

def incr (n):

delta = n

def f (x):

return delta + x

return f

p2 = incr(2)

print p2(3)

...

ra
DL
SL

incr’s
frame
with
delta

code for f

Value of incr(2)

During execution of incr(2)

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 26

Representing Closures

• Could just forbid this case (as
some languages do):

– Algol 68 would not allow
pointer to f (last slide) to be
returned from incr.

– Or, one could allow it, and do
something random when f (i.e.
via delta) is called.

• Scheme and Python allow it and
do the right thing.

• But must in general put local
variables (and a static link) in a
record on the heap, instead of
on the stack.

...

ra
DL

temp
storage
etc.

SL

delta,
& n

code for f

Value of incr(2)

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 27

Representing Closures

• Could just forbid this case (as
some languages do):

– Algol 68 would not allow
pointer to f (last slide) to be
returned from incr.

– Or, one could allow it, and do
something random when f (i.e.
via delta) is called.

• Scheme and Python allow it and
do the right thing.

• But must in general put local
variables (and a static link) in a
record on the heap, instead of
on the stack.

• Now frame can disappear harm-
lessly.

...

SL

delta,
& n

code for f

Value of incr(2)

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 27

7: Continuations

• Suppose function return were not the end?

def f (cont): return cont

x = 1

def g (n):

global x, c

if n == 0:

print "a", x, n,

c = call_with_continuation (f)

print "b", x, n,

else: g(n-1); print "c", x, n,

g(2); x += 1; print; c()

Prints:

a 1 0 b 1 0 c 1 1 c 1 2

b 2 0 c 2 1 c 2 2

b 3 0 c 3 1 c 3 2

...

• The continuation, c, passed to f is “the function that does whatever
is supposed to happen after I return from f.”

• Can be used to implement exceptions, threads, co-routines.

• Implementation? Nothing much for it but to put all activation frames
on the heap.

• Distributed cost.

• However, we can do better on special cases like exceptions.

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 28

Summary

Problem Solution
1. Plain: no recursion, no nest-

ing, fixed-sized data with size
known by compiler, first-class
function values.

Use inline expansion or use
static variables to hold return
addresses, locals, etc.

2. #1 + recursion Need stack.
3. #2 + Add variable-sized un-

boxed data
Need to keep both stack
pointer and frame pointer.

4. #3 – first-class function values
+ Nested functions, up-level ad-
dressing

Add static link or global display.

5. #4 + Function values w/ prop-
erly nested accesses: functions
passed as parameters only.

Static link, function values con-
tain their link. (Global display
doesn’t work so well)

6. #5 + General closures: first-
class functions returned from
functions or stored in variables

Store local variables and static
link on heap.

7. #6 + Continuations Put everything on the heap.

Last modified: Wed Apr 15 19:41:01 2009 CS164: Lecture #16 29

	Lecture #16: Introduction to Runtime Organization
	Status
	Run-time environments
	Code Generation Goals and Considerations
	Subgoals and Constraints
	Activations and Lifetimes (Extents)
	Memory Layout
	Activation Records
	Calling Conventions
	Static Storage
	Heap Storage
	Achieving Runtime Effects---Functions
	1: No recursion, no nesting, fixed-sized data
	1: Calling conventions
	2: Add recursion
	2: Calling Sequence when Frame Size is Fixed
	2: Calling sequence from ia32
	3: Add Variable-Sized Unboxed Data
	Other Uses of the Dynamic Link
	3: Calling sequence for the ia32
	4: Allow Nesting of Functions, Up-Level Addressing
	Static Links
	The Global Display
	5: Allow Function Values, Properly Nested Access
	Function Value Representation
	6: General Closures
	Representing Closures
	7: Continuations
	Summary

