
1

4/23/09 Prof. Hilfinger CS 164 Lecture 26 1

IL for Arrays &
 Local Optimizations

Lecture 26
(Adapted from notes by R. Bodik and G. Necula)

4/23/09 Prof. Hilfinger CS 164 Lecture 26 2

Multi-dimensional Arrays

• A 2D array is a 1D array of 1D arrays
• Java uses arrays of pointers to arrays for >1D

arrays.
• But if row size constant, for faster access and

compactness, may prefer to represent an MxN
array as a 1D array of 1D rows (not pointers to
rows): row-major order

• FORTRAN layout is 1D array of 1D columns:
column-major order.

4/23/09 Prof. Hilfinger CS 164 Lecture 26 3

IL for 2D Arrays (Row-Major Order)

• Again, let S be size of one element, so that a row of
length N has size NxS.

 igen(e1[e2,e3], t) =
 igen(e1, t1); igen(e2,t2); igen(e3,t3)
 igen(N, t4) (N need not be constant)
 t5 := t4 * t2; t6 := t5 + t3;
 t7 := t6*S;
 t8 := t7 + t1

 t := *t8

4/23/09 Prof. Hilfinger CS 164 Lecture 26 4

Array Descriptors

• Calculation of element address for e1[e2,e3]
has form VO + S1 x e2 + S2 x e3, where
– VO (address of e1[0,0]) is the virtual origin
– S1 and S2 are strides
– All three of these are constant throughout lifetime

of array
• Common to package these up into an array

descriptor, which can be passed in lieu of the
array itself.

4/23/09 Prof. Hilfinger CS 164 Lecture 26 5

Array Descriptors (II)

• By judicious choice of descriptor values, can
make the same formula work for different
kinds of array.

• For example, if lower bounds of indices are 1
rather than 0, must compute

 address of e[1,1] + S1 x (e2-1) + S2 x (e3-1)
• But some algebra puts this into the form
 VO + S1 x e2 + S2 x e3

where VO = address of e[1,1] - S1 - S2

4/23/09 Prof. Hilfinger CS 164 Lecture 26 6

Observation

• These examples show profligate use of
registers.

• Doesn’t matter, because this is Intermediate
Code. Rely on later optimization stages to do
the right thing.

2

4/23/09 Prof. Hilfinger CS 164 Lecture 26 7

 Code Optimization: Basic Concepts

4/23/09 Prof. Hilfinger CS 164 Lecture 26 8

Definition. Basic Blocks

• A basic block is a maximal sequence of
instructions with:
– no labels (except at the first instruction), and
– no jumps (except in the last instruction)

• Idea:
– Cannot jump in a basic block (except at beginning)
– Cannot jump out of a basic block (except at end)
– Each instruction in a basic block is executed after

all the preceding instructions have been executed

4/23/09 Prof. Hilfinger CS 164 Lecture 26 9

Basic Block Example

• Consider the basic block
1. L:
2. t := 2 * x
3. w := t + x
4. if w > 0 goto L’

• No way for (3) to be executed without (2)
having been executed right before
– We can change (3) to w := 3 * x
– Can we eliminate (2) as well?

4/23/09 Prof. Hilfinger CS 164 Lecture 26 10

Definition. Control-Flow Graphs

• A control-flow graph is a directed graph with
– Basic blocks as nodes
– An edge from block A to block B if the execution

can flow from the last instruction in A to the first
instruction in B

– E.g., the last instruction in A is jump LB

– E.g., the execution can fall-through from block A to
block B

• Frequently abbreviated as CFG

4/23/09 Prof. Hilfinger CS 164 Lecture 26 11

Control-Flow Graphs. Example.

• The body of a method (or
procedure) can be
represented as a control-
flow graph

• There is one initial node
• All “return” nodes are

terminal

x := 1
i := 1

L:
 x := x * x
 i := i + 1
 if i < 10 goto L

4/23/09 Prof. Hilfinger CS 164 Lecture 26 12

Optimization Overview

• Optimization seeks to improve a program’s
utilization of some resource
– Execution time (most often)
– Code size
– Network messages sent
– Battery power used, etc.

• Optimization should not alter what the
program computes
– The answer must still be the same

3

4/23/09 Prof. Hilfinger CS 164 Lecture 26 13

A Classification of Optimizations

• For languages like C and Cool there are three
granularities of optimizations
1. Local optimizations

• Apply to a basic block in isolation
2. Global optimizations

• Apply to a control-flow graph (method body) in isolation
3. Inter-procedural optimizations

• Apply across method boundaries

• Most compilers do (1), many do (2) and very
few do (3)

4/23/09 Prof. Hilfinger CS 164 Lecture 26 14

Cost of Optimizations

• In practice, a conscious decision is made not
to implement the fanciest optimization known

• Why?
– Some optimizations are hard to implement
– Some optimizations are costly in terms of

compilation time
– The fancy optimizations are both hard and costly

• The goal: maximum improvement with minimum
of cost

4/23/09 Prof. Hilfinger CS 164 Lecture 26 15

Local Optimizations

• The simplest form of optimizations
• No need to analyze the whole procedure body

– Just the basic block in question

• Example: algebraic simplification

4/23/09 Prof. Hilfinger CS 164 Lecture 26 16

Algebraic Simplification

• Some statements can be deleted
x := x + 0
x := x * 1

• Some statements can be simplified
 x := x * 0 ⇒ x := 0
 y := y ** 2 ⇒ y := y * y
 x := x * 8 ⇒ x := x << 3
 x := x * 15 ⇒ t := x << 4; x := t - x

(on some machines << is faster than *; but not on all!)

4/23/09 Prof. Hilfinger CS 164 Lecture 26 17

Constant Folding

• Operations on constants can be computed at
compile time

• In general, if there is a statement
 x := y op z
– And y and z are constants
– Then y op z can be computed at compile time

• Example: x := 2 + 2 ⇒ x := 4
• Example: if 2 < 0 jump L can be deleted
• When might constant folding be dangerous?

4/23/09 Prof. Hilfinger CS 164 Lecture 26 18

Flow of Control Optimizations

• Eliminating unreachable code:
– Code that is unreachable in the control-flow graph
– Basic blocks that are not the target of any jump or

“fall through” from a conditional
– Such basic blocks can be eliminated

• Why would such basic blocks occur?
• Removing unreachable code makes the program

smaller
– And sometimes also faster, due to memory cache

effects (increased spatial locality)

4

4/23/09 Prof. Hilfinger CS 164 Lecture 26 19

Single Assignment Form

• Some optimizations are simplified if each
assignment is to a temporary that has not
appeared already in the basic block

• Intermediate code can be rewritten to be in
single assignment form
x := a + y x := a + y
a := x ⇒ a1 := x
x := a * x x1 := a1 * x
b := x + a b := x1 + a1
 (x1 and a1 are fresh temporaries)

4/23/09 Prof. Hilfinger CS 164 Lecture 26 20

Common Subexpression Elimination

• Assume
– Basic block is in single assignment form

• All assignments with same rhs compute the
same value

• Example:
x := y + z x := y + z
… ⇒ …
w := y + z w := x

• Why is single assignment important here?

4/23/09 Prof. Hilfinger CS 164 Lecture 26 21

Copy Propagation

• If w := x appears in a block, all subsequent uses of w
can be replaced with uses of x

• Example:
 b := z + y b := z + y
 a := b ⇒ a := b
 x := 2 * a x := 2 * b

• This does not make the program smaller or faster but
might enable other optimizations
– Constant folding
– Dead code elimination

• Again, single assignment is important here.

4/23/09 Prof. Hilfinger CS 164 Lecture 26 22

Copy Propagation and Constant Folding

• Example:
a := 5 a := 5
x := 2 * a ⇒ x := 10
y := x + 6 y := 16
t := x * y t := x << 4

4/23/09 Prof. Hilfinger CS 164 Lecture 26 23

Dead Code Elimination

If
w := rhs appears in a basic block
w does not appear anywhere else in the program

Then
the statement w := rhs is dead and can be eliminated
– Dead = does not contribute to the program’s result

Example: (a is not used anywhere else)
x := z + y b := z + y b := z + y
a := x ⇒ a := b ⇒ x := 2 * b
x := 2 * a x := 2 * b

4/23/09 Prof. Hilfinger CS 164 Lecture 26 24

Applying Local Optimizations

• Each local optimization does very little by
itself

• Typically optimizations interact
– Performing one optimizations enables other opt.

• Typical optimizing compilers repeatedly
perform optimizations until no improvement is
possible
– The optimizer can also be stopped at any time to

limit the compilation time

5

4/23/09 Prof. Hilfinger CS 164 Lecture 26 25

An Example

• Initial code:
 a := x ** 2
 b := 3
 c := x
 d := c * c
 e := b * 2
 f := a + d
 g := e * f

4/23/09 Prof. Hilfinger CS 164 Lecture 26 26

An Example

• Algebraic optimization:
 a := x ** 2
 b := 3
 c := x
 d := c * c
 e := b * 2
 f := a + d
 g := e * f

4/23/09 Prof. Hilfinger CS 164 Lecture 26 27

An Example

• Algebraic optimization:
 a := x * x
 b := 3
 c := x
 d := c * c
 e := b + b
 f := a + d
 g := e * f

4/23/09 Prof. Hilfinger CS 164 Lecture 26 28

An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := c * c
 e := b + b
 f := a + d
 g := e * f

4/23/09 Prof. Hilfinger CS 164 Lecture 26 29

An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 3 + 3
 f := a + d
 g := e * f

4/23/09 Prof. Hilfinger CS 164 Lecture 26 30

An Example

• Constant folding:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 3 + 3
 f := a + d
 g := e * f

6

4/23/09 Prof. Hilfinger CS 164 Lecture 26 31

An Example

• Constant folding:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 6
 f := a + d
 g := e * f

4/23/09 Prof. Hilfinger CS 164 Lecture 26 32

An Example

• Common subexpression elimination:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 6
 f := a + d
 g := e * f

4/23/09 Prof. Hilfinger CS 164 Lecture 26 33

An Example

• Common subexpression elimination:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + d
 g := e * f

4/23/09 Prof. Hilfinger CS 164 Lecture 26 34

An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + d
 g := e * f

4/23/09 Prof. Hilfinger CS 164 Lecture 26 35

An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + a
 g := 6 * f

4/23/09 Prof. Hilfinger CS 164 Lecture 26 36

An Example

• Dead code elimination:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + a
 g := 6 * f

7

4/23/09 Prof. Hilfinger CS 164 Lecture 26 37

An Example

• Dead code elimination:
 a := x * x

 f := a + a
 g := 6 * f

• This is the final form

4/23/09 Prof. Hilfinger CS 164 Lecture 26 38

Peephole Optimizations on Assembly Code

• The optimizations presented before work on
intermediate code
– They are target independent
– But they can be applied on assembly language also

• Peephole optimization is an effective
technique for improving assembly code
– The “peephole” is a short sequence of (usually

contiguous) instructions
– The optimizer replaces the sequence with another

equivalent (but faster) one

4/23/09 Prof. Hilfinger CS 164 Lecture 26 39

Peephole Optimizations (Cont.)

• Write peephole optimizations as replacement
rules
 i1, …, in → j1, …, jm

where the rhs is the improved version of the lhs
• Examples:

 move $a $b, move $b $a → move $a $b
– Works if move $b $a is not the target of a jump
 addiu $a $b k, lw $c ($a) → lw $c k($b)
- Works if $a not used later (is “dead”)

4/23/09 Prof. Hilfinger CS 164 Lecture 26 40

Peephole Optimizations (Cont.)

• Many (but not all) of the basic block
optimizations can be cast as peephole
optimizations
– Example: addiu $a $b 0 → move $a $b
– Example: move $a $a →
– These two together eliminate addiu $a $a 0

• Just like for local optimizations, peephole
optimizations need to be applied repeatedly to
get maximum effect

4/23/09 Prof. Hilfinger CS 164 Lecture 26 41

Local Optimizations. Notes.

• Intermediate code is helpful for many
optimizations

• Many simple optimizations can still be applied
on assembly language

• “Program optimization” is grossly misnamed
– Code produced by “optimizers” is not optimal in any

reasonable sense
– “Program improvement” is a more appropriate term

4/23/09 Prof. Hilfinger CS 164 Lecture 26 42

Local Optimizations. Notes (II).

• Serious problem: what to do with pointers?
– *t may change even if local variable t does not:

Aliasing
– Arrays are a special case (address calculation)

• What to do about globals?
• What to do about calls?

– Not exactly jumps, because they (almost) always
return.

– Can modify variables used by caller
• Next: global optimizations

