
4/28/09 Prof. Hilfinger CS164 Lecture 27 1

Global Optimization

Lecture 27
(From notes by R. Bodik & G. Necula)

4/28/09 Prof. Hilfinger CS164 Lecture 27 2

Administrative

• HW #6 was posted online this evening.
• Version #2 of project 3 files: representation

now complete, but still a bit of work for me to
do.

4/28/09 Prof. Hilfinger CS164 Lecture 27 3

Lecture Outline

• Global flow analysis

• Global constant propagation

• Liveness analysis

4/28/09 Prof. Hilfinger CS164 Lecture 27 4

Local Optimization

Simple basic-block optimizations…
– Constant propagation
– Dead code elimination

X := 3

Y := Z * W

Q := X + Y

X := 3

Y := Z * W

Q := 3 + Y

Y := Z * W

Q := 3 + Y

4/28/09 Prof. Hilfinger CS164 Lecture 27 5

Global Optimization

… extend to entire control-flow graphs

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

4/28/09 Prof. Hilfinger CS164 Lecture 27 6

Global Optimization

… extend to entire control-flow graphs

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

4/28/09 Prof. Hilfinger CS164 Lecture 27 7

Global Optimization

… extend to entire control-flow graphs

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * 3

4/28/09 Prof. Hilfinger CS164 Lecture 27 8

Correctness

• How do we know it is OK to globally propagate
constants?

• There are situations where it is incorrect:
X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

4/28/09 Prof. Hilfinger CS164 Lecture 27 9

Correctness (Cont.)

To replace a use of x by a constant k we must
know that:

 Constant Replacement Condition (CR):
On every path to the use of x, the last

assignment to x is x := k

4/28/09 Prof. Hilfinger CS164 Lecture 27 10

Example 1 Revisited

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

so replacing X by 3 is OK

4/28/09 Prof. Hilfinger CS164 Lecture 27 11

Example 2 Revisited

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

so replacing X by 3 is not OK

4/28/09 Prof. Hilfinger CS164 Lecture 27 12

Discussion

• The correctness condition is not trivial to
check

• “All paths” includes paths around loops and
through branches of conditionals

• Checking the condition requires global analysis
– An analysis of the entire control-flow graph for one

method body

4/28/09 Prof. Hilfinger CS164 Lecture 27 13

Global Analysis

Global optimization tasks share several traits:
– The optimization depends on knowing a property P

at a particular point in program execution
– Proving P at any point requires knowledge of the

entire method body

– Property P is typically undecidable !

4/28/09 Prof. Hilfinger CS164 Lecture 27 14

Undecidability of Program Properties

• Rice’s theorem: Most interesting dynamic
properties of a program are undecidable:
– Does the program halt on all (some) inputs?

• This is called the halting problem
– Is the result of a function F always positive?

• Assume we can answer this question precisely
• Take function H and find out if it halts by testing function

F(x) { H(x); return 1; } whether it has positive result

• Syntactic properties are decidable !
– E.g., How many occurrences of “x” are there?

• Theorem does not apply in absence of loops

4/28/09 Prof. Hilfinger CS164 Lecture 27 15

Conservative Program Analyses

• So, we cannot tell for sure that “x” is always 3
– Then, how can we apply constant propagation?

• It is OK to be conservative. If the
optimization requires P to be true, then want
to know either
– P is definitely true
– Don’t know if P is true or false

• It is always correct to say “don’t know”
– We try to say don’t know as rarely as possible

• All program analyses are conservative

4/28/09 Prof. Hilfinger CS164 Lecture 27 16

Global Analysis (Cont.)

• Global dataflow analysis is a standard
technique for solving problems with these
characteristics

• Global constant propagation is one example of
an optimization that requires global dataflow
analysis

4/28/09 Prof. Hilfinger CS164 Lecture 27 17

Global Constant Propagation

• Global constant propagation can be performed
at any point where CR condition holds

• Consider the case of computing CR condition
for a single variable X at all program points

4/28/09 Prof. Hilfinger CS164 Lecture 27 18

Global Constant Propagation (Cont.)

• To make the problem precise, we associate one of the
following values with X at every program point

Don’t know if X is a
constant

*

X = constant cc

No value has
reached here (yet)

#

interpretationvalue

4/28/09 Prof. Hilfinger CS164 Lecture 27 19

Example

X = *
X = 3

X = 3

X = 3
X = 4

X = *

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

X = 3

X = 3

X = *

4/28/09 Prof. Hilfinger CS164 Lecture 27 20

Using the Information

• Given global constant information, it is easy to
perform the optimization
– Simply inspect the x = _ associated with a

statement using x
– If x is constant at that point replace that use of x

by the constant

• But how do we compute the properties x = _

4/28/09 Prof. Hilfinger CS164 Lecture 27 21

The Idea

The analysis of a complicated program can be
expressed as a combination of simple rules
relating the change in information between

adjacent statements

4/28/09 Prof. Hilfinger CS164 Lecture 27 22

Explanation

• The idea is to “push” or “transfer” information
from one statement to the next

• For each statement s, we compute information
about the value of x immediately before and
after s

Cin(x,s) = value of x before s
Cout(x,s) = value of x after s

(we care about values #, *, k)

4/28/09 Prof. Hilfinger CS164 Lecture 27 23

Transfer Functions

• Define a transfer function that transfers
information from one statement to another

• In the following rules, let statement s have
immediate predecessor statements p1,…,pn

4/28/09 Prof. Hilfinger CS164 Lecture 27 24

Rule 1

if Cout(x, pi) = * for some i, then Cin(x, s) = *

 s

X = *

X = *

X = ?X = ?X = ?

p1
p2 p3

p4

4/28/09 Prof. Hilfinger CS164 Lecture 27 25

Rule 2

If Cout(x, pi) = c and Cout(x, pj) = d and d ≠ c
then Cin (x, s) = *

 s

X = d

X = *

X = ?X = ?X = c

4/28/09 Prof. Hilfinger CS164 Lecture 27 26

Rule 3

if Cout(x, pi) = c for at least one i and is c or #
for all i, then Cin(x, s) = c

 s

X = c

X = c

X = #X = #X = c

4/28/09 Prof. Hilfinger CS164 Lecture 27 27

Rule 4

if Cout(x, pi) = # for all i,
then Cin(x, s) = #

 s

X = #

X = #

X = #X = #X = #

4/28/09 Prof. Hilfinger CS164 Lecture 27 28

The Other Half

• Rules 1-4 relate the out of one statement to
the in of the successor statement
– they propagate information forward across CFG

edges

• Now we need rules relating the in of a
statement to the out of the same statement
– to propagate information across statements

4/28/09 Prof. Hilfinger CS164 Lecture 27 29

Rule 5

 Cout(x, s) = # if Cin(x, s) = #

s
X = #

X = #

4/28/09 Prof. Hilfinger CS164 Lecture 27 30

Rule 6

 Cout(x, x := c) = c if c is a constant

x := c
X = ?

X = c

4/28/09 Prof. Hilfinger CS164 Lecture 27 31

Rule 7

 Cout(x, x := f(…)) = *

x := f(…)
X = ?

X = *

4/28/09 Prof. Hilfinger CS164 Lecture 27 32

Rule 8

 Cout(x, y := …) = Cin(x, y := …) if x ≠ y

y := . . .
X = a

X = a

4/28/09 Prof. Hilfinger CS164 Lecture 27 33

An Algorithm

1. For every entry s to the program, set
Cin(x, s) = *

2. Set Cin(x, s) = Cout(x, s) = # everywhere else

3. Repeat until all points satisfy 1-8:
Pick s not satisfying 1-8 and update using the

appropriate rule

4/28/09 Prof. Hilfinger CS164 Lecture 27 34

The Value #

• To understand why we need #, look at a loop

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = *
X = 3

X = 3

X = 3

X = 3

4/28/09 Prof. Hilfinger CS164 Lecture 27 35

The Value # (Cont.)

• Consider the statement Y := 0
• To compute whether X is constant at this

point, we need to know whether X is constant
at the two predecessors
– X := 3
– A := 2 * X

• But info for A := 2 * X depends on its
predecessors, including Y := 0!

4/28/09 Prof. Hilfinger CS164 Lecture 27 36

The Value # (Cont.)

• Because of cycles, all points must have values
at all times

• Intuitively, assigning some initial value allows
the analysis to break cycles

• The initial value # means “So far as we know,
control never reaches this point”

4/28/09 Prof. Hilfinger CS164 Lecture 27 37

Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = *
X = #

X = #

X = #

X = #

X = #

X = #

X = #

3

3

3

3

3
3

3

We are done
when all rules
are satisfied !

4/28/09 Prof. Hilfinger CS164 Lecture 27 38

Another Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := 4

A < B

4/28/09 Prof. Hilfinger CS164 Lecture 27 39

Another Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := 4

A < B

X = *
X = #

X = #

X = #

X = #

X = #

X = #

X = #

X = #

3

3

3

3

3
3
4

4
*

*

Must continue
until all rules
are satisfied !

4/28/09 Prof. Hilfinger CS164 Lecture 27 40

Orderings

• We can simplify the presentation of the
analysis by ordering the values

< c < *

• Drawing a picture with “smaller” values drawn
lower, we get

#

*

-1 0 1… … a lattice

4/28/09 Prof. Hilfinger CS164 Lecture 27 41

Orderings (Cont.)

• * is the largest value, # is the least
– All constants are in between and incomparable

• Let lub be the least-upper bound in this
ordering

• Rules 1-4 can be written using lub:
Cin(x, s) = lub { Cout(x, p) | p is a predecessor of s }

4/28/09 Prof. Hilfinger CS164 Lecture 27 42

Termination

• Simply saying “repeat until nothing changes”
doesn’t guarantee that eventually nothing
changes

• The use of lub explains why the algorithm
terminates
– Values start as # and only increase
– # can change to a constant, and a constant to *
– Thus, C_(x, s) can change at most twice

4/28/09 Prof. Hilfinger CS164 Lecture 27 43

Termination (Cont.)

Thus the algorithm is linear in program size

 Number of steps
 = Number of C_(….) values computed * 2
 = Number of program statements * 4

4/28/09 Prof. Hilfinger CS164 Lecture 27 44

Liveness Analysis

Once constants have been globally propagated, we would
like to eliminate dead code

After constant propagation, X := 3 is dead (assuming this
is the entire CFG)

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

4/28/09 Prof. Hilfinger CS164 Lecture 27 45

Live and Dead

• The first value of x is
dead (never used)

• The second value of x is
live (may be used)

X := 3

X := 4

 Y := X

4/28/09 Prof. Hilfinger CS164 Lecture 27 46

Liveness

A variable x is live at statement s if
– There exists a statement s’ that uses x

– There is a path from s to s’

– That path has no intervening assignment to x

4/28/09 Prof. Hilfinger CS164 Lecture 27 47

Global Dead Code Elimination

• A statement x := … is dead code if x is dead
after the assignment

• Dead statements can be deleted from the
program

• But we need liveness information first . . .

4/28/09 Prof. Hilfinger CS164 Lecture 27 48

Computing Liveness

• We can express liveness as a function of
information transferred between adjacent
statements, just as in copy propagation

• Liveness is simpler than constant propagation,
since it is a boolean property (true or false)

4/28/09 Prof. Hilfinger CS164 Lecture 27 49

Liveness Rule 1

Lout(x, p) = ∨ { Lin(x, s) | s a successor of p }

p

X = true

X = true

X = ?X = ?X = ?

4/28/09 Prof. Hilfinger CS164 Lecture 27 50

Liveness Rule 2

 Lin(x, s) = true if s refers to x on the rhs

…:= x + …
X = true

X = ?

4/28/09 Prof. Hilfinger CS164 Lecture 27 51

Liveness Rule 3

 Lin(x, x := e) = false if e does not refer to x

x := e
X = false

X = ?

4/28/09 Prof. Hilfinger CS164 Lecture 27 52

Liveness Rule 4

 Lin(x, s) = Lout(x, s) if s does not refer to x

s
X = a

X = a

4/28/09 Prof. Hilfinger CS164 Lecture 27 53

Algorithm

1. Let all L_(…) = false initially

2. Repeat until all statements s satisfy rules 1-4
Pick s where one of 1-4 does not hold and update

using the appropriate rule

4/28/09 Prof. Hilfinger CS164 Lecture 27 54

Another Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := X * X

X := 4

A < B

L(X) = false

true

L(X) = false

L(X) = false
L(X) = false

L(X) = false
L(X) = false
L(X) = false
L(X) = false

L(X) = false

L(X) = false

L(X) = false true true

true
true

true

true
trueL(X) = false

true

Dead code

4/28/09 Prof. Hilfinger CS164 Lecture 27 55

Termination

• A value can change from false to true, but not
the other way around

• Each value can change only once, so
termination is guaranteed

• Once the analysis is computed, it is simple to
eliminate dead code

4/28/09 Prof. Hilfinger CS164 Lecture 27 56

SSA and Global Analysis

• For local optimizations, the single static
assignment (SSA) form was useful.

• But how can it work with a full CFG?
– E.g., how do we avoid two assignments to the

temporary holding x after this conditional?
 if a>b:
 x = a
 else:
 x = b
 # where is x at this point?

4/28/09 Prof. Hilfinger CS164 Lecture 27 57

A Small Kludge: φ “functions”

• For the preceding example, we get a CFG like
this:

a>b

x1=a x2=a

x3= φ(x1,x2)

4/28/09 Prof. Hilfinger CS164 Lecture 27 58

φ “functions”

• An artificial device to allow SSA notation in CFGs.
• In a basic block, each variable is associated with one

definition,
• φ-functions in effect associate each variable with a

set of possible definitions.
• In general, one tries to introduce them in strategic

places so as to minimize total number.
• Although this device increases number of assignments

in IL, register allocation can remove many by assigning
related IL registers to the same real register.

4/28/09 Prof. Hilfinger CS164 Lecture 27 59

Common Subexpression Elimination (CSE)

• Easy to tell (conservatively) if two IL
assignments compute the same value: just see
if they have the same right-hand side.

• Thanks to SSA, same variables indicate same
values.

4/28/09 Prof. Hilfinger CS164 Lecture 27 60

Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Constant propagation is a forwards analysis:
information is pushed from inputs to outputs

Liveness is a backwards analysis: information is
pushed from outputs back towards inputs

4/28/09 Prof. Hilfinger CS164 Lecture 27 61

Analysis

• There are many other global flow analyses

• Most can be classified as either forward or
backward

• Most also follow the methodology of local
rules relating information between adjacent
program points

