
4/29/09 Prof. Hilfinger CS164 Lecture 38 1

Register Allocation

Lecture 28
(from notes by G. Necula and R. Bodik)

4/29/09 Prof. Hilfinger CS164 Lecture 38 2

Lecture Outline

• Memory Hierarchy Management

• Register Allocation
– Register interference graph

– Graph coloring heuristics

– Spilling

• Cache Management

4/29/09 Prof. Hilfinger CS164 Lecture 38 3

The Memory Hierarchy

Registers 1 cycle 256-2000 bytes

Cache 1-100 cycles 256k-16M

Main memory 150-1000 cycles 32M-16G

Disk 0.5-10M cycles 10G-1T

4/29/09 Prof. Hilfinger CS164 Lecture 38 4

Managing the Memory Hierarchy

• Programs are written as if there are only two
kinds of memory: main memory and disk

• Programmer is responsible for moving data
from disk to memory (e.g., file I/O)

• Hardware is responsible for moving data
between memory and caches

• Compiler is responsible for moving data
between memory and registers

4/29/09 Prof. Hilfinger CS164 Lecture 38 5

Current Trends

• Cache and register sizes are growing slowly
• Processor speed improves faster than memory

speed and disk speed
– The cost of a cache miss is growing
– The widening gap is bridged with more caches

• It is very important to:
– Manage registers properly
– Manage caches properly

• Compilers are good at managing registers

4/29/09 Prof. Hilfinger CS164 Lecture 38 6

The Register Allocation Problem

• Intermediate code uses as many temporaries as
necessary
– This complicates final translation to assembly
– But simplifies code generation and optimization
– Typical intermediate code uses too many temporaries

• The register allocation problem:
– Rewrite the intermediate code to use fewer

temporaries than there are machine registers
– Method: assign more temporaries to a register

• But without changing the program behavior

4/29/09 Prof. Hilfinger CS164 Lecture 38 7

History

• Register allocation is as old as intermediate
code

• Register allocation was used in the original
FORTRAN compiler in the ‘50s
– Very crude algorithms

• A breakthrough was not achieved until 1980
when Chaitin invented a register allocation
scheme based on graph coloring
– Relatively simple, global and works well in practice

4/29/09 Prof. Hilfinger CS164 Lecture 38 8

An Example

• Consider the program
a := c + d
e := a + b
f := e - 1

– with the assumption that a and e die after use
• Temporary a can be “reused” after “a + b”
• Same with temporary e after “e - 1”
• Can allocate a, e, and f all to one register (r1):

r1 := c + d
r1 := r1 + b
r1 := r1 - 1

4/29/09 Prof. Hilfinger CS164 Lecture 38 9

Basic Register Allocation Idea

• The value in a dead temporary is not needed
for the rest of the computation
– A dead temporary can be reused

• Basic rule:
– Temporaries t1 and t2 can share the same

register if at any point in the program at
most one of t1 or t2 is live !

4/29/09 Prof. Hilfinger CS164 Lecture 38 10

Algorithm: Part I

• Compute live variables for each point:
a := b + c
d := -a
e := d + f

f := 2 * e
b := d + e
e := e - 1

b := f + c

{b}

{c,e}

{b}

{c,f} {c,f}

{b,c,e,f}

{c,d,e,f}

{b,c,f}

{c,d,f}
{a,c,f}

4/29/09 Prof. Hilfinger CS164 Lecture 38 11

The Register Interference Graph

• Two temporaries that are live simultaneously
cannot be allocated in the same register

• We construct an undirected graph
– A node for each temporary
– An edge between t1 and t2 if they are live

simultaneously at some point in the program
• This is the register interference graph (RIG)

– Two temporaries can be allocated to the same
register if there is no edge connecting them

4/29/09 Prof. Hilfinger CS164 Lecture 38 12

Register Interference Graph. Example.

• For our example:
a

f

e

d

c

b

• E.g., b and c cannot be in the same register
• E.g., b and d can be in the same register

4/29/09 Prof. Hilfinger CS164 Lecture 38 13

Register Interference Graph. Properties.

• It extracts exactly the information needed to
characterize legal register assignments

• It gives a global (i.e., over the entire flow
graph) picture of the register requirements

• After RIG construction the register allocation
algorithm is architecture independent

4/29/09 Prof. Hilfinger CS164 Lecture 38 14

Graph Coloring. Definitions.

• A coloring of a graph is an assignment of
colors to nodes, such that nodes connected by
an edge have different colors

• A graph is k-colorable if it has a coloring with
k colors

4/29/09 Prof. Hilfinger CS164 Lecture 38 15

Register Allocation Through Graph Coloring

• In our problem, colors = registers
– We need to assign colors (registers) to graph nodes

(temporaries)

• Let k = number of machine registers

• If the RIG is k-colorable then there is a
register assignment that uses no more than k
registers

4/29/09 Prof. Hilfinger CS164 Lecture 38 16

Graph Coloring. Example.

• Consider the sample RIG
a

f

e

d

c

b

• There is no coloring with fewer than 4 colors
• There are 4-colorings of this graph

r4

r1

r2

r3

r2

r3

4/29/09 Prof. Hilfinger CS164 Lecture 38 17

Graph Coloring. Example.

• Under this coloring the code becomes:

r2 := r3 + r4
r3 := -r2
r2 := r3 + r1

r1 := 2 * r2

r3 := r3 + r2

r2 := r2 - 1

r3 := r1 + r4

4/29/09 Prof. Hilfinger CS164 Lecture 38 18

Computing Graph Colorings

• The remaining problem is to compute a
coloring for the interference graph

• But:
1. This problem is very hard (NP-hard). No efficient

algorithms are known.
2. A coloring might not exist for a given number or

registers
• The solution to (1) is to use heuristics
• We’ll consider later the other problem

4/29/09 Prof. Hilfinger CS164 Lecture 38 19

Graph Coloring Heuristic

• Observation:
– Pick a node t with fewer than k neighbors in RIG
– Eliminate t and its edges from RIG
– If the resulting graph has a k-coloring then so does

the original graph
• Why:

– Let c1,…,cn be the colors assigned to the neighbors
of t in the reduced graph

– Since n < k we can pick some color for t that is
different from those of its neighbors

4/29/09 Prof. Hilfinger CS164 Lecture 38 20

Graph Coloring Heuristic

• The following works well in practice:
– Pick a node t with fewer than k neighbors
– Push t on a stack and remove it from the RIG
– Repeat until the graph has one node

• Then start assigning colors to nodes in the
stack (starting with the last node added)
– At each step pick a color different from those

assigned to already colored neighbors

4/29/09 Prof. Hilfinger CS164 Lecture 38 21

Graph Coloring Example (1)

• Remove a and then d

a

f

e

d

c

b

• Start with the RIG and with k = 4:

Stack: {}

4/29/09 Prof. Hilfinger CS164 Lecture 38 22

Graph Coloring Example (2)

• Now all nodes have fewer than 4 neighbors and can be
removed: c, b, e, f

• Leaving an empty graph and stack containing
 {f, e, b, c, d, a}

f

e c

b

Stack: {d, a}

Resulting graph:

4/29/09 Prof. Hilfinger CS164 Lecture 38 23

Graph Coloring Example (2)

• Start assigning colors to: f, e, b, c, d, a
• At each step, guaranteed there’s a free color

b
a

e c r4

fr1

r2

r3

r2

r3

d

4/29/09 Prof. Hilfinger CS164 Lecture 38 24

What if the Heuristic Fails?

• What if during simplification we get to a state
where all nodes have k or more neighbors ?

• Example: try to find a 3-coloring of the RIG:

a

f

e

d

c

b

4/29/09 Prof. Hilfinger CS164 Lecture 38 25

What if the Heuristic Fails?

• Remove a and get stuck (as shown below)

f

e

d

c

b

• Pick a node as a candidate for spilling
– A spilled temporary “lives” in memory

• Assume that f is picked as a candidate

4/29/09 Prof. Hilfinger CS164 Lecture 38 26

What if the Heuristic Fails?

• Remove f and continue the simplification
– Simplification now succeeds: b, d, e, c

e

d

c

b

4/29/09 Prof. Hilfinger CS164 Lecture 38 27

What if the Heuristic Fails?

• On the assignment phase we get to the point
when we have to assign a color to f

• We hope that among the 4 neighbors of f we
use less than 3 colors ⇒ optimistic coloring

f

e

d

c

b r3

r1r2

r3

?

4/29/09 Prof. Hilfinger CS164 Lecture 38 28

Spilling

• Since optimistic coloring failed we must spill
temporary f

• We must allocate a memory location as the
home of f
– Typically this is in the current stack frame
– Call this address fa

• Before each operation that uses f, insert
 f := load fa

• After each operation that defines f, insert
 store f, fa

4/29/09 Prof. Hilfinger CS164 Lecture 38 29

Spilling. Example.

• This is the new code after spilling f
a := b + c
d := -a
f := load fa
e := d + f

f := 2 * e
store f, fa

b := d + e
e := e - 1

f := load fa
b := f + c

4/29/09 Prof. Hilfinger CS164 Lecture 38 30

Recomputing Liveness Information

• The new liveness information after spilling:
a := b + c
d := -a
f := load fa
e := d + f

f := 2 * e
store f, fa

b := d + e
e := e - 1

f := load fa
b := f + c

{b}

{c,e}

{b}

{c,f}
{c,f}

{b,c,e,f}

{c,d,e,f}

{b,c,f}

{c,d,f}
{a,c,f}

{c,d,f}

{c,f}

{c,f}

4/29/09 Prof. Hilfinger CS164 Lecture 38 31

Recomputing Liveness Information

• The new liveness information is almost as
before

• f is live only
– Between a f := load fa and the next instruction
– Between a store f, fa and the preceding instr.

• Spilling reduces the live range of f
• And thus reduces its interferences
• Which result in fewer neighbors in RIG for f

4/29/09 Prof. Hilfinger CS164 Lecture 38 32

Recompute RIG After Spilling

• The only changes are in removing some of the
edges of the spilled node

• In our case f still interferes only with c and d
• And the resulting RIG is 3-colorable

a

f

e

d

c

b

4/29/09 Prof. Hilfinger CS164 Lecture 38 33

Spilling (Cont.)

• Additional spills might be required before a
coloring is found

• The tricky part is deciding what to spill
• Possible heuristics:

– Spill temporaries with most conflicts
– Spill temporaries with few definitions and uses
– Avoid spilling in inner loops

• Any heuristic is correct

4/29/09 Prof. Hilfinger CS164 Lecture 38 34

Caches

• Compilers are very good at managing registers
– Much better than a programmer could be

• Compilers are not good at managing caches
– This problem is still left to programmers
– It is still an open question whether a compiler can

do anything general to improve performance
• Compilers can, and a few do, perform some

simple cache optimization

4/29/09 Prof. Hilfinger CS164 Lecture 38 35

Cache Optimization

• Consider the loop
for(j = 1; j < 10; j++)

for(i=1; i<1000000; i++)
a[i] *= b[i]

– This program has a terrible cache
performance
• Why?

4/29/09 Prof. Hilfinger CS164 Lecture 38 36

Cache Optimization (II)

• Consider the program:
for(i=1; i<1000000; i++)
 for(j = 1; j < 10; j++)

a[i] *= b[i]
– Computes the same thing
– But with much better cache behavior
– Might actually be more than 10x faster

• A compiler can perform this optimization
– called loop interchange

4/29/09 Prof. Hilfinger CS164 Lecture 38 37

Cache Optimization (III)

• Other kinds of memory layout decisions
possible, such as padding rows of matrix for
better fit in a cache.

• Prefetching informs cache of anticipated
future memory fetches so that they can
proceed in parallel.

• Hardware often does this, in which case
compiler may have to tell it when not to
prefetch.

4/29/09 Prof. Hilfinger CS164 Lecture 38 38

Conclusions

• Register allocation is a “must have”
optimization in most compilers:
– Because intermediate code uses too many

temporaries
– Because it makes a big difference in performance

• Graph coloring is a powerful register allocation
scheme

• Good cache management could give much
larger payoffs, but it is difficult.

