
5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 1

Language Security

Lecture 30A
(from notes by G. Necula)

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 2

Lecture Outline

• Beyond compilers
– Looking at other issues in programming language

design and tools

• C
– Arrays
– Exploiting buffer overruns
– Detecting buffer overruns

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 3

Platitudes

• Language design has influence on
– Efficiency

– Safety

– Security

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 4

C Design Principles

• Small language
• Maximum efficiency
• Safety less important

• Designed for the world as it was in 1972
– Weak machines
– Superhuman programmers (or so they thought)
– Trusted networks

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 5

Arrays in C

char buffer[100];

Declares and allocates an array of 100 chars

100 *sizeof(char)

0 1 2 99

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 6

C Array Operations

char buf1[100], buf2[100];

Write:
buf1[0] = ‘a’;

Read:
return buf2[0];

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 7

What’s Wrong with this Picture?

int i;
for(i = 0; buf1[i] != ‘\0’; i++) {
 buf2[i] = buf1[i];
}
buf2[i] = ‘\0’;

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 8

Indexing Out of Bounds

The following are all well-typed C and may
generate no run-time errors

char buffer[100];

buffer[-1] = ‘a’;
buffer[100] = ‘a’;
buffer[100000] = ‘a’;

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 9

Why?

• Why does C allow out-of-bounds array
references?

– Proving at compile-time that all array references
are in bounds is impossible in most languages

– Checking at run-time that all array references are
in bounds is “expensive”

• But it is even more expensive to skip the checks

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 10

Code Generation for Arrays

• The C code:
 buf1[i] = 1; /* buf1 has type int[] */

C with bounds checks
r1 = &buf1;
r2 = load i;
r3 = r2 * 4;
if r3 < 0 then error;
r5 = load limit of buf1;
if r3 >= r5 then error;
r4 = r1 + r3
store r4, 1

Regular C
r1 = &buf1;
r2 = load i;
r3 = r2 * 4;

r4 = r1 + r3
store r4, 1

• The assembly code:
Costly!

Finding the
array limits
is non-trivial

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 11

C vs. Java

• C array reference typical case
– Offset calculation
– Memory operation (load or store)

• Java array reference typical case
– Offset calculation
– Memory operation (load or store)
– Array bounds check
– Type compatibility check (for some arrays)

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 12

Buffer Overruns

• A buffer overrun writes past the end of an
array

• Buffer usually refers to a C array of char
– But can be any array

• So who’s afraid of a buffer overrun?
– Can cause a core dump
– Can damage data structures
– What else?

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 13

Stack Smashing

Buffer overruns can alter the control flow of
your program!

char buffer[100]; /* stack allocated array */

100 *sizeof(char)

0 1 2 99 return address

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 14

An Overrun Vulnerability

void foo(char in[]) {
char buffer[100];
int i = 0;
for(i = 0; in[i] != ‘\0’; i++)

{ buffer[i] = in[i]; }
buffer[i] = ‘\0’;

}

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 15

An Interesting Idea

char in[104] = { ‘ ‘,…,’ ‘, magic 4 chars }
foo(in); /* Return here: LRET */

100 *sizeof(char)

0 1 2 99 return address
foo entry

(LRET)

100 *sizeof(char)

0 1 2 99 return address
foo exit

magic 4 chars

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 16

Discussion

• So we can make foo jump wherever we like.

• Result of unanticipated interaction of two
features:
– Unchecked array operations
– Stack-allocated arrays and return addresses

• Knowledge of frame layout allows prediction of where
array and return address are stored

– Note the “magic cast” from char’s to an address

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 17

The Rest of the Story

• Say that foo is part of a network server and
the in originates in a received message
– Some remote user can make foo jump anywhere !

• But where is a “useful” place to jump?
– Idea: Jump to some code that gives you control of

the host system (e.g. code that spawns a shell)
• But where to put such code?

– Idea: Put the code in the same buffer and jump
there!

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 18

The Plan

• We’ll make the code jump to the following
code:

• In C: exec(“/bin/sh”);
• In assembly (pretend):

 mov $a0, 15 ; load the syscall code for “exec”
 mov $a1, &Ldata ; load the command
 syscall ; make the system call
Ldata: .byte ‘/’,’b’,’i’,’n’,’/’,’s’,’h’,0 ; null-terminated

• In machine code: 0x20, 0x42, 0x00, …

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 19

The Plan

char in[104] = { 104 magic chars }
foo(in);

0 1 2 99 return address
foo exit

0x20, 0x42, 0x00, …

• The last 4 bytes in “in” must be address of start of
 buffer
• Its position might depend on many factors !

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 20

Guess the Location of the Injected Code

• Trial & error: gives you a ballpark
• Then pad the injected code with NOP

– E.g. add $0, $1, 0x2020
• stores result in $0 which is hardwired to 0 anyway
• Encoded as 0x20202020

0 1 2 99 return address
foo exit

0x20, …, 0x20, 0x20, 0x42, 0x00, …

• Works even with an approximate address of buffer !
The bad code

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 21

More Problems

• We do not know exactly where the return address is
– Depends on how the compiler chose to allocate variables in

the stack frame
• Solution: pad the buffer at the end with many copies

of the “magic return address X”

0 1 2 99

return
address

foo exit

0x20, …, 0x20, 0x20, 0x42, 0x00, …, X, X, X, X, …, X , X, …

The bad code

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 22

Even More Problems

• The most common way to copy the bad code in a
stack buffer is using string functions: strcpy,
strcat, etc.

• This means that buf cannot contain 0x00 bytes
– Why?

• Solution:
– Rewrite the code carefully
– Instead of “addiu $4,$0,0x0015 (code 0x20400015)
– Use “addiu $4,$0,0x1126; subiu $4, $4, 0x1111”

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 23

The State of C Programming

• Buffer overruns are common
– Programmers must do their own bounds checking
– Easy to forget or be off-by-one or more
– Program still appears to work correctly

• In C w.r.t. to buffer overruns
– Easy to do the wrong thing
– Hard to do the right thing

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 24

The State of Cracking

• Buffer overruns are the attack of choice
– 40-50% of new vulnerabilities are buffer overrun

exploits
– Many attacks of this flavor: Code Red, Nimda, MS-

SQL server

• Highly automated toolkits available to exploit
known buffer overruns
– Search for “buffer overruns” yields > 25,000 hits

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 25

The Sad Reality

• Even well-known buffer overruns are still
widely exploited
– Hard to get people to upgrade millions of vulnerable

machines

• We assume that there are many more unknown
buffer overrun vulnerabilities
– At least unknown to the good guys

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 26

Blunt-Force Solutions

• Common architectures can disallow execution
of code on the stack or on the heap.

• Unfortunately, there are legitimate uses for
both.

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 27

Static Analysis to Detect Buffer Overruns

• Detecting buffer overruns before distributing
code would be better

• Idea: Build a tool similar to a type checker to
detect buffer overruns

• Joint work by Alex Aiken, David Wagner, Jeff
Foster, at Berkeley

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 28

Focus on Strings

• Most important buffer overrun exploits are
through string buffers
– Reading an untrusted string from the network,

keyboard, etc.

• Focus the tool only on arrays of characters

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 29

Idea 1: Strings as an Abstract Data Type

• A problem: Pointer operations & array
dereferences are very difficult to analyze
statically
– Where does *a point?
– What does buf[j] refer to?

• Idea: Model effect of string library functions
directly
– Hard code effect of strcpy, strcat, etc.

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 30

Idea 2: The Abstraction

• Model buffers as pairs of integer ranges
– Alloc min allocated size of the buffer in bytes
– Length max number of bytes actually in use

• Use integer ranges [x,y] = { x, x+1, …, y-1, y }
– Alloc & length cannot be computed exactly

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 31

The Strategy

• For each program expression, write
constraints capturing the alloc and len of its
string subexpressions

• Solve the constraints for the entire program

• Check for each string variable s
len(s) ≤ alloc(s)

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 32

The Constraints

char s[n]; n ≤ alloc(s)
strcpy(dst,src) len(src) ≤ len(dst)

p = strdup(s) len(s) ≤ len(p) &
len(s) ≤ alloc(p)

p[n] = ‘\0’ n+1 ≤ len(p)

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 33

Constraint Solving

• Solving the constraints is akin to solving
dataflow equations (e.g., constant propagation)

• Build a graph
– Nodes are len(s), alloc(s)
– Edges are constraints len(s) ≤ len(t)

• Propagate information forward through the
graph
– Special handling of loops in the graph

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 34

Using Solutions

• Once you’ve solved constraints to extract as much
information as possible, look to see if

len(s) ≤ alloc(s)
 is necessarily true. If not, may have a problem.
• For example, if b is parameter about which we know

nothing, then in
 char s[100];
 strcpy (s, b);
 assertion len(s) ≤ alloc(s) will not simplify to True.

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 35

Results

• Found new buffer overruns in sendmail

• Found new exploitable overruns in Linux
nettools package

• Both widely used, previously hand-audited
packages

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 36

Limitations

• Tool produces many false positives
– 1 out of 10 warnings is a real bug

• Tool has false negatives
– Unsound---may miss some overruns

• But still productive to use

5/6/2009 Prof. Hilfinger CS 164 Lecture 30A 37

Summary

• Programming language knowledge useful
beyond compilers

• Useful for programmers
– Understand what you are doing!

• Useful for tools other than compilers
– Big research direction

