
Lecture 6: Top-Down Parsing

Administrivia

• Need teams!!

• Project #1 will be posted (late) tomorrow (homework, too). Due 27
Feb.

• Test #1: March 10 (in class).

• Estimate Project #2 will be due 3 April, test #2 14 April, project
#3 1 May.

Last modified: Wed Mar 11 19:41:31 2009 CS164: Lecture #6 1



Beating Grammars into Programs

• A grammar looks like a recursive program. Sometimes it works to
treat it that way.

• Assume the existence of

– A function ‘next’ that returns the syntactic category of the next
token (without side-effects);

– A function ‘scan(C)’ that checks that next syntactic category is C
and then reads another token into next(). Returns the semantic
value that the lexer assigned to the previous token in next().

– A function ERROR for reporting errors.

• Strategy: Translate each nonterminal, A, into a function that reads
an A according to one of its productions and returns the semantic
value computed by the corresponding action.

Last modified: Wed Mar 11 19:41:31 2009 CS164: Lecture #6 2



Example: Lisp Expression Recognizer

Grammar

prog : sexp ’⊣’

sexp : atom

| ’(’ elist ’)’

| ’\’’ sexp

elist : ǫ

| sexp elist

atom : SYMBOL

| NUMERAL

| STRING

def prog ():

def sexp ():

if :

elif :

elif :

def atom ():

if :

else:

def elist ():

if :

Last modified: Wed Mar 11 19:41:31 2009 CS164: Lecture #6 3



Expression Recognizer with Actions

• Can make the nonterminal functions return semantic values.

• Assume lexer somehow supplies semantic values for tokens, if needed

elist : ǫ { $$ = emptyList; }

| sexp elist { $$ = cons($1, $2); }

def elist ():

if next() not in (’)’, ’⊣’):

else:

return emptyList

Last modified: Wed Mar 11 19:41:31 2009 CS164: Lecture #6 4



Grammar Problems I

What goes wrong here?

p : e ’⊣’

e : t { $$ = $1; }

| e ’/’ t { $$ = makeTree(DIV, $1, $3); }

| e ’*’ t { $$ = makeTree(MULT, $1, $3); }

Last modified: Wed Mar 11 19:41:31 2009 CS164: Lecture #6 5



Grammar Problems II

Well then: What goes wrong here?

p : e ’⊣’

e : t { $$ = $1; }

| t ’/’ e { $$ = makeTree(DIV, $1, $3); }

| t ’*’ e { $$ = makeTree(MULT, $1, $3); }

Last modified: Wed Mar 11 19:41:31 2009 CS164: Lecture #6 6



Grammar Problems III

What actions?

p : e ’⊣’

e : t et { ? }

et: ǫ { ? }

| ’/’ e { ? }

| ’*’ e { ? }

t : I { $$ = $1; }

What are FIRST and FOLLOW?

Last modified: Wed Mar 11 19:41:31 2009 CS164: Lecture #6 7



Using Loops to Roll Up Recursion

• There are ways to deal with problem in last slide within the pure
framework, but why bother?

• Implement e procedure with a loop, instead:

def e():

while :

Last modified: Wed Mar 11 19:41:31 2009 CS164: Lecture #6 8


	Lecture 6: Top-Down Parsing
	Beating Grammars into Programs
	Example: Lisp Expression Recognizer
	Expression Recognizer with Actions
	Grammar Problems I
	Grammar Problems II
	Grammar Problems III
	Using Loops to Roll Up Recursion

