Lecture 7：General and Bottom－Up Parsing

Administrivia

－Project \＃1 posted．Due 27 Feb．
－HW \＃3 posted，due next Monday．HW \＃4 goes back to Friday schedule．
－Test \＃1：March 10 （in class）．

Making a Deterministic Algorithm

－If we had an infinite supply of processors，could just spawn new ones at each＂Choose＂line．
－Some would give up，some loop forever，but on correct programs，at least one process would get through．
－To do this for real（say with one processor），need to keep track of all possibilities systematically．
－This is the idea behind Earley＇s algorithm：
－Handles any context－free grammar．
－Finds all parses of any string．
－Runs in $O\left(N^{3}\right)$ time for ambiguous grammars，$O\left(N^{2}\right)$ time for＂non－ deterministic grammars＂，or $O(N)$ time for deterministic gram－ mars（such as accepted by Bison）．

Fixing Recursive Descent

－Can formulate top－down parsing analogously to NFAs．

```
parse (A, S):
    """Assuming A is a nonterminal and S = cr c⿸⿱㇒丿一口
        return integer k such that A can derive the string c}\mp@subsup{c}{1}{}\ldots\mp@subsup{c}{k}{}.""
        Choose production 'A: }\mp@subsup{\alpha}{1}{}\mp@subsup{\alpha}{2}{}\cdots\mp@subsup{\alpha}{m}{\prime}\mathrm{ ' for A (nondeterministically)
    k = 0
for x in }\mp@subsup{\alpha}{1}{},\mp@subsup{\alpha}{2}{},\cdots,\mp@subsup{\alpha}{m}{}\mathrm{ :
        if x is a terminal:
                if }\textrm{x}==\mp@subsup{c}{k+1}{}\mathrm{ :
                    k += 1
                else:
            GIVE UP
        else:
        k += parse (x, c}\mp@subsup{c}{k+1}{}\cdots\mp@subsup{c}{n}{}
    return k
```

－Assume that the grammar contains one production for the start symbol：p：$\gamma-$ ．
－We＇ll say that a call to parse returns a value if some set of choices for productions（the blue step）would return a value（just like NFA）．
－Then if parse（ p, s ）returns a value，s must be in the language． Last modified：Wed Mar 11 19：41：44 2009

CS164：Lecture \＃7 2

Earley＇s Algorithm：I

－First，reformulate to ditch the loop．Assume the string $S=c_{1} \cdots c_{n}$ is fixed．
parse（A：$\alpha \bullet \beta, \mathbf{s}, \mathrm{k})$ ：
＂＂＂Assumes A：$\alpha \beta$ is a production in the grammar， $0<=\mathrm{s}<=\mathrm{k}<=\mathrm{n}$ ，and α can produce the string $c_{s+1} \cdots c_{k}$ ．Returns integer j such that β can produce $c_{k+1} \cdots c_{j}$ ．＂＂＂
if β is empty：
return k
Assume β has the form $y \delta$
if y is a terminal：
if $y==c_{k+1}$ ：
return $\operatorname{parse}(\mathrm{A}: \alpha y \bullet \delta, \mathrm{~s}, \mathrm{k}+1)$
else
GIVE UP
else：
Choose production＇y：κ＇for y（nondeterministically）
$j=\operatorname{parse}(\mathrm{y}: \bullet \kappa, \mathrm{k}, \mathrm{k})$
return parse（A：$\alpha y \bullet \delta, \mathrm{~s}, \mathrm{j}$ ）
－Now do all possible choices that result in such a way as to avoid redundant work（＂nondeterministic memoization＂）．

Chart Parsing

- Idea is to build up a table (known as a chart of all calls to parse that have been made.
- Only one entry in chart for each distinct triple of arguments (A: $\alpha \bullet \beta, \mathbf{s}, \mathbf{k}$).
- We'll organize table in columns numbered by the k parameter, so that column k represents all calls that are looking at c_{k+1} in the input.
- Each column contains entries with the other two parameters: [A: $\alpha \bullet \beta, \mathbf{s}$], which is called an item.
- The columns, therefore, are item sets.

Example, completed

- Last slide showed only those items that survive and get used. Algorithm actually computes dead ends as well (unlettered, in red).

0	1	2	3
	$\begin{aligned} & \text { e. S: '-'॰, } 0 \\ & \text { f.e: s•I, } 0 \end{aligned}$	$\begin{array}{lll} \hline \text { g. e: S I•, 0 } \\ \text { h.e: e •'t' e, } \end{array}$	

4	5
$\begin{aligned} & \hline \text { m.e: s I•, } 3 \\ & \text { n. e: e '+' eセ, } 0 \\ & \text { o. p: e e'片, } 0 \\ & \text { e: e } \bullet^{\prime}+{ }^{\prime} e, 3 \end{aligned}$	p.p: e 'f' •, 0

Ambiguity

- Ambiguity only important here when computing semantic actions.
- Rather than being satisfied with a single path through the chart, we look at all paths.
- And we attach the set of possible results of parse (Y: • $k, \mathrm{~s}, \mathrm{k}$) to the nonterminal Y in the algorithm.

