Bottom-Up Parsing

Lecture 8
(From slides by 6. Necula & R. Bodik)

2/12/09 Prof. Hilfinger CS164 Lecture 8

Administrivia

+ Test I during class on 10 March.
* Notes updated (at last)

2/12/09 Prof. Hilfinger CS164 Lecture 8

Bottom-Up Parsing

- We've been looking at general context-free parsing.

+ It comes at a price, measured in overheads, so in
practice, we design programming languages to be
parsed by less general but faster means, like top-down
recursive descent.

* Deterministic bottom-up parsing is more general than
top-down parsing, and just as efficient.

*+ Most common form is LR parsing
- L means that tokens are read left to right
- R means that it constructs a rightmost derivation

2/12/09 Prof. Hilfinger CS164 Lecture 8 3

An Introductory Example

* LR parsers don't need left-factored grammars
and can also handle left-recursive grammars

+ Consider the following grammar:
E—-E+(E)]|int
- Why is this not LL(1)?

* Consider the string: int + (int)+ (int)

2/12/09 Prof. Hilfinger CS164 Lecture 8 4

The Idea

* LR parsing reduces a string to the start
symbol by inverting productions:

sent < input string of terminals

while sent = S:

- Identify first (3 in sent such that A — s a
productionand S =* a Ay — a fy =sent

- Replace by A in sent (so o A y becomes new sent)
+ Such o B's are called handles

2/12/09 Prof. Hilfinger CS164 Lecture 8 5

A Bottom-up Parse in Detail (1)

int + (int) + (int)

nt + (int) + (Int

2/12/09 Prof. Hilfinger CS164 Lecture 8

A Bottom-up Parse in Detail (2)

int + (int) + (int)
E + (int) + (int)

(handles in red)

E
\

nt + (int) + (Int

2/12/09 Prof. Hilfinger CS164 Lecture 8

A Bottom-up Parse in Detail (3)

int + (int) + (int)
E + (int) + (int)
E +(E)+ (int)

E E
\ \

nt + (int) + (Int

2/12/09 Prof. Hilfinger CS164 Lecture 8

A Bottom-up Parse in Detail (4)

int + (int) + (int)

E + (int) + (int)

E +(E)+ (int)

E + (int) e
E E

nt + (int) + (Int

2/12/09 Prof. Hilfinger CS164 Lecture 8

A Bottom-up Parse in Detail (5)

int + (int) + (int)

E + (int) + (int)

E + (E)+ (int)

E + (int) £
E+(E)

E - E
\ \ \

nt + (int) + (Int)

2/12/09 Prof. Hilfinger CS164 Lecture 8 10

A Bottom-up Parse in Detail (6)

4 int + (int) + (int) E
E + (int) + (int)
E + (E) + (int)
E + (int) =

E -+ (E)
E

A reverse rightmost [E E
derivation | | |

nt + (int) + (Int)

2/12/09 Prof. Hilfinger CS164 Lecture 8 11

Where Do Reductions Happen

Because an LR parser produces a reverse
rightmost derivation:
- If apy is step of a bottom-up parse with handle of3
- And the next reduction is by A— 3
- Then y is a string of terminals !

.. Because aAy — afy is a step in a right-most
derivation

Intuition: We make decisions about what

reduction to use after seeing all symbols in
handle, rather than before (as for LL(1))

2/12/09 Prof. Hilfinger CS164 Lecture 8 12

Notation

+ Idea: Split the string into two substrings

- Right substring (a string of terminals) is as yet
unexamined by parser

- Left substring has terminals and non-terminals

» The dividing point is marked by a |
- The | is not part of the string
- Marks end of next potential handle

» Initially, all input is unexamined: Ix;x, . .. x,

2/12/09 Prof. Hilfinger CS164 Lecture 8 13

Shift-Reduce Parsing

» Bottom-up parsing uses only two kinds of actions:
Shift: Move | one place to the right, shifting a
terminal to the left string
E+(int) = E+ (int1)

Reduce: Apply an inverse production at the handle.
If E— E+ (E)isaproduction, then
E+(E+(E)I) =E+E!)

2/12/09 Prof. Hilfinger CS164 Lecture 8 14

Shift-Reduce Example

lint + (int) + (int)$ shift

int + (int)+ (Int

Shift-Reduce Example

lint + (int) + (int)$ shift
int | +(int) + (int)$ red. E — int

Shift-Reduce Example

lint + (int) + (int)$ shift
int | + (int) + (int)$ red. E — int
El+(int)+(int)$ shift 3 times

int + (int)+ (Int

Shift-Reduce Example

lint + (int) + (int)$ shift

int | + (int) + (int)$ red.E — int

El+(int)+(int)$ shift 3 times
E+(int1)+(int)$ red. E— int

int +

(

int)+ |

iNt

Shift-Reduce Example

| int + (int) + (int)$
int | + (int) + (int)$
E |+ (int) + (int)$
E+(int 1)+ (int)$
E+(El)+(int)$

shift

red. E — int

shift 3 times
red. E — int

shift

Shift-Reduce Example

lint + (int) + (int)$
int | + (int) + (int)$
El+(int) + (int)$
E+(int 1)+ (int)$
E+(El)+(int)$
E+(E)I+(inD)$

shift

red. E — int
shift 3 times
red. E — int
shift

red. E = E + (E)

E

/

int +

(

E

|

int)+ |

iNt

Shift-Reduce Example

| int + (int) + (int)$
int | + (int) + (int)$
E |+ (int) + (int)$
E+(int 1)+ (int)$
E+(El)+(int)$
E+(E)I+(inD)$
El+(int)$

shift

red. E — int
shift 3 times
red. E — int
shift

red. E — E + (E)
shift 3 times

E

/

int +

(

E

\

int)+ |

iNt

Shift-Reduce Example

| int + (int) + (int)$
int | + (int) + (int)$
E I+ (int) + (int)$
E+(int1)+(int)$
E+(El)+(int)$
E+(E)I+(int)$
El+(int)$
E+(int1)$

shift

red. E — int
shift 3 times
red. E — int
shift

red. E — E + (E)
shift 3 times
red. E — int

E

/

int +

(

E

|

int)+ |

iNt

Shift-Reduce Example

| int + (int) + (int)$
int | + (int) + (int)$
El+(int) + (in)$
E+(int1)+(int)$
E+(El)+(int)$
E+(E)I+(int)$
El+(inH)$
E+(int1)$
E+(El1)$

shift

red. E — int
shift 3 times
red. E — int
shift

red. E — E + (E)
shift 3 times
red. E — int
shift

E

/

int +

Shift-Reduce Example

| int + (int) + (int)$ shift

int 1 +(int) + (int)$ red. E — int
El+(int)+(int)$ shift 3 times
E+(int1)+(int)$ red E— int
E+(E1)+(int)$ shift
E+(E)I+(inH)$ red. E — E + (E)

El+(inH)$ shift 3 times
E+(int1)$ red. E — int
E+(EI1)$ shift

E+(E)I$ red. E — E + (E)

E

/

int +

Shift-Reduce Example

| int + (int) + (int)$ shift

int 1 +(int) + (int)$ red. E — int
El+(int)+(int)$ shift 3 times
E+(int1)+(int)$ red E— int
E+(E1)+(int)$ shift
E+(E)I+(inH)$ red. E — E + (E)

El+(inH)$ shift 3 times
E+(int1)$ red. E — int
E+(EI1)$ shift

E+(E)I$ red. E — E + (E)
El$ accept

E

/

int +

]

E

\

(It)+ |

The Stack

* Left string can be implemented as a stack
- Top of the stack is the |

» Shift pushes a terminal on the stack

* Reduce pops O or more symbols from the stack
(production rhs) and pushes a non-terminal on
the stack (production lhs)

2/12/09 Prof. Hilfinger CS164 Lecture 8 26

Key Issue: When to Shift or Reduce?

+ Decide based on the left string (the stack)

» Idea: use a finite automaton (DFA) to decide
when to shift or reduce
- The DFA input is the stack up to potential handle
- DFA alphabet consists of terminals and nonterminals
- DFA recognizes complete handles

+ We run the DFA on the stack and we examine
the resulting state X and the token tok after
- If X has a transition labeled tok then shift
- If X is labeled with "A — 8 on tok" then reduce

2/12/09 Prof. Hilfinger CS164 Lecture 8 27

LR(1) Parsing. An Example

int L int + (int) + (int)$ shift
@% i inf I+ (int) + (int)$ E - inf
on$,+ El1+(int)+(int)$ shift(x3)
E+(int1)+(int)$ E - int
E+(E1)+(int)$ shift
E+(E)I+(int)$ E - E+(E)
Ei+(int)$ shift (x3)
E+(int1)$ E - int
E+(E1)$ shift
E+(E)1 $ E - E+(E)
E1$ accept

Representing the DFA

* Parsers represent the DFA as a 2D table
- As for table-driven lexical analysis

- Lines correspond to DFA states

» Columns correspond to terminals and non-
terminals

* In classical treatments, columns are split into:
- Those for terminals: action table
- Those for non-terminals: goto table

2/12/09 Prof. Hilfinger CS164 Lecture 8 29

Representing the DFA. Example

» The table for a fragment of our DFA:
int + () $

s4
sb

PE ~ int PE . int
s/

N O O b W

PE . E+(E) PE . E+(E)

E—-E+(E)on$,+

2/12/09 Prof. Hilfinger CS164 Lecture 8 30

The LR Parsing Algorithm

- After a shift or reduce action we rerun the
DFA on the entire stack

- This is wasteful, since most of the work is
repeated

- So record, for each stack element, state of
the DFA after that state

* LR parser maintains a stack
(symy, state;) ... (sym,, state,)
state, is the final state of the DFA on sym; ... sym,

2/12/09 Prof. Hilfinger CS164 Lecture 8 31

The LR Parsing Algorithm

Let I = ww,..w,$ be initial input
Let j=1
Let DFA state O be the start state
Let stack = (dummy, O)
repeat
case table[top_state(stack), I[j]] of
shift ki push (I[j], k); j+=1
reduce X — o
pop |a| pairs,
push (X, table[top_state(stack), X])
accept: halt normally
error: halt and report error

2/12/09 Prof. Hilfinger CS164 Lecture 8

32

Parsing Contexts

+ Consider the state describing the situation at the Iin
the stack E + (lint)+ (int)
-+ Context:

- We are looking foranE — E + (* E)
* Have have seen E + (from the right-hand side

- We are also looking for E — ¢ inf orE —°*E+(E)
* Have seen nothing from the right-hand side

One DFA state describes a set of such contexts
(Traditionally, use ® to show where the | is.)

2/12/09 Prof. Hilfinger CS164 Lecture 8 33

LR(1) Items

* An LR(1) item is a pair:
X —aef, a
- X — af is a production
- ais a terminal (the lookahead terminal)
- LR(1) means 1 lookahead terminal

*+ [X — a°f, a] describes a context of the parser
- We are trying to find an X followed by an a, and

- We have o already on top of the stack

- Thus we need to see next a prefix derived from pa

2/12/09 Prof. Hilfinger CS164 Lecture 8 34

Convention

+ We add to our grammar a fresh new start
symbol S and a production S - E

- Where E is the old start symbol
- No need to do this if E had only one production

» The initial parsing context contains:

S--E $
- Trying to find an S as a string derived from E$
- The stack is empty

2/12/09 Prof. Hilfinger CS164 Lecture 8 35

Constructing the Parsing DFA. Example.

1
SQ.E,$ 0 E%inT. /+ E — int
E— *E+(E), $/+T it Liad .+

E%'In'l' $/+ E%E"" (E),$/+ 3

> E /
5 Ee$ I

E — E+(E), $/+ E — E+(*E), $/+|4

accgp‘r E FE — .E+(E))/+
. / E — *int,)/+

5| E = E+(E®), $/+ m’\A 5 |
E — Ee+(E),)/+ E — inte,)/+| E—int

on), +
2/12/09 and so on... Prof. Hilfinger CS164 Lecture 8 36

LR Parsing Tables. Notes

» Parsing tables (i.e. the DFA) can be
constructed automatically for a CFG

» But we still need to understand the
construction to work with parser generators

- E.g., they report errors in terms of sets of items

* What kind of errors can we expect?

2/12/09 Prof. Hilfinger CS164 Lecture 8 37

Shift/Reduce Conflicts

- If a DFA state contains both
[X - aeaB, b] and [Y — ye, a]

» Then on input "a" we could either
- Shift into state [X — aa*B, b], or
- Reduce with Y — vy

- This is called a shift-reduce conflict

2/12/09 Prof. Hilfinger CS164 Lecture 8

38

Shift/Reduce Conflicts

+ Typically due to ambiguities in the grammar

» Classic example: the dangling else
S—ifEthenS | ifEthenSelse S | OTHER

- Will have DFA state containing
[S — if E then S, else]
[S = if Ethen S*else S, $]
+ If else follows then we can shift or reduce

2/12/09 Prof. Hilfinger CS164 Lecture 8 39

More Shift/Reduce Conflicts

» Consider the ambiguous grammar
E—-E+E|E*E|int
- We will have the states containing
[E—=E*E, +] [E—=E*E°, +]
[E—>+E+E, +] =E [E—>E++E, +]

» Again we have a shift/reduce on input +
- We need to reduce (* binds more tightly than +)
- Solution: declare the precedence of * and +

2/12/09 Prof. Hilfinger CS164 Lecture 8 40

More Shift/Reduce Conflicts

* In bison declare precedence and associativity

of terminal symbols:
sleft +
sleft *

* Precedence of a rule = that of its last terminal
- See bison manual for ways to override this default

* Resolve shift/reduce conflict with a shift if:
- input terminal has higher precedence than the rule
- the precedences are the same and right associative

2/12/09 Prof. Hilfinger CS164 Lecture 8 41

Using Precedence to Solve S/R Conflicts

* Back to our example:
[E—=E*<E,+] [E —E * Ee, +]
[E—><E+E,+] =E [E—E«*+E,+]

» Will choose reduce because precedence of
rule E — E * E is higher than of terminal +

2/12/09 Prof. Hilfinger CS164 Lecture 8 42

Using Precedence to Solve S/R Conflicts

- Same grammar as before
E—-E+E|E*E|int
+ We will also have the states
[E—E+eE,+] [E — E + Ee, +]
[E—><+E+E,+] =E [E—Ee*+E,+]

* Now we also have a shift/reduce on input +

- We choose reduce because E — E + E and + have
the same precedence and + is left-associative

2/12/09 Prof. Hilfinger CS164 Lecture 8 43

Using Precedence to Solve S/R Conflicts

* Back to our dangling else example
[S — if E then S, else]
[S — if Ethen S® else S, x]

» Can eliminate conflict by declaring else with
higher precedence than then

- However, best to avoid overuse of precedence
declarations or you'll end with unexpected
parse frees

2/12/09 Prof. Hilfinger CS164 Lecture 8 44

Reduce/Reduce Conflicts

- If a DFA state contains both
[X = ae,a]land [Y - Be, a]

- Then on input "a” we don't know which
production to reduce

- This is called a reduce/reduce conflict

2/12/09 Prof. Hilfinger CS164 Lecture 8 45

Reduce/Reduce Conflicts

» Usually due to gross ambiguity in the grammar

+ Example: a sequence of identifiers
S—e¢|id]| idS

» There are two parse trees for the string id
S —id
S—idS—id
How does this confuse the parser?

2/12/09 Prof. Hilfinger CS164 Lecture 8 46

More on Reduce/Reduce Conflicts

- Consider the states [S—ide, $]
[S =S, $] [S—=id*S, $]
[S — -, $] =id [S—e, $]
[S—=eid, $] [S—=cid, $]
[S—=+id S, $] [S—=°idS, $]

» Reduce/reduce conflict on input $

* Better rewrite the grammar: S —¢ |id S

2/12/09

S—-=5—id
S—-S5S—-idS—id

Prof. Hilfinger CS164 Lecture 8

47

Relation to Bison

- Bison builds this kind of machine.

+ However, for efficiency concerns, collapses
many of the states together.

- Causes some additional conflicts, but not
many.

+ The machines discussed here are LR(1)

engines. Bison's optimized versions are
LALR(1) engines.

2/12/09 Prof. Hilfinger CS164 Lecture 8 48

A Hierarchy of 6rammar Classes

2/12/09

Unambiguous Grammars Ambiguous

L(k)

LL(1)

Grammars
LR(k)

LR(1)

\

LALR(1)

SLR

LR(0)

Prof. Hilfinger CS164 Lecture 8

From Andrew Appel,
"Modern Compiler
Implementation in Java"

49

Notes on Parsing

» Parsing
- A simple parser: LL(1), recursive descent
- A more powerful parser: LR(1)
- An efficiency hack: LALR(1)
- We use LALR(1) parser generators

- Earley's algorithm provides a complete algorithm
for parsing context-free languages.

2/12/09 Prof. Hilfinger CS164 Lecture 8 50

