
2/12/09 Prof. Hilfinger CS164 Lecture 8 1

Bottom-Up Parsing

Lecture 8
(From slides by G. Necula & R. Bodik)

2/12/09 Prof. Hilfinger CS164 Lecture 8 2

Administrivia

• Test I during class on 10 March.
• Notes updated (at last)

2/12/09 Prof. Hilfinger CS164 Lecture 8 3

Bottom-Up Parsing

• We’ve been looking at general context-free parsing.
• It comes at a price, measured in overheads, so in

practice, we design programming languages to be
parsed by less general but faster means, like top-down
recursive descent.

• Deterministic bottom-up parsing is more general than
top-down parsing, and just as efficient.

• Most common form is LR parsing
– L means that tokens are read left to right
– R means that it constructs a rightmost derivation

2/12/09 Prof. Hilfinger CS164 Lecture 8 4

An Introductory Example

• LR parsers don’t need left-factored grammars
and can also handle left-recursive grammars

• Consider the following grammar:

 E → E + (E) | int

– Why is this not LL(1)?

• Consider the string: int + (int) + (int)

2/12/09 Prof. Hilfinger CS164 Lecture 8 5

The Idea

• LR parsing reduces a string to the start
symbol by inverting productions:

sent ← input string of terminals
while sent ≠ S:

– Identify first β in sent such that A → β is a
production and S →* α A γ → α β γ = sent

– Replace β by A in sent (so α A γ becomes new sent)
• Such α β’s are called handles

2/12/09 Prof. Hilfinger CS164 Lecture 8 6

A Bottom-up Parse in Detail (1)

int++int int()

int + (int) + (int)

()

2/12/09 Prof. Hilfinger CS164 Lecture 8 7

A Bottom-up Parse in Detail (2)

E

int++int int()

(handles in red)

int + (int) + (int)
E + (int) + (int)

()

2/12/09 Prof. Hilfinger CS164 Lecture 8 8

A Bottom-up Parse in Detail (3)

E

int++int int()

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)

()

E

2/12/09 Prof. Hilfinger CS164 Lecture 8 9

A Bottom-up Parse in Detail (4)

E

int++int int()

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)
E + (int) E

()

E

2/12/09 Prof. Hilfinger CS164 Lecture 8 10

A Bottom-up Parse in Detail (5)

E

int++int int()

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)
E + (int)
E + (E)

E

()

EE

2/12/09 Prof. Hilfinger CS164 Lecture 8 11

A Bottom-up Parse in Detail (6)

E

E

int++int int()

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)
E + (int)
E + (E)
E

E

()

EEA reverse rightmost
derivation

2/12/09 Prof. Hilfinger CS164 Lecture 8 12

Where Do Reductions Happen

Because an LR parser produces a reverse
rightmost derivation:
– If αβγ is step of a bottom-up parse with handle αβ
– And the next reduction is by A→ β
– Then γ is a string of terminals !

… Because αAγ → αβγ is a step in a right-most
derivation

Intuition: We make decisions about what
reduction to use after seeing all symbols in
handle, rather than before (as for LL(1))

2/12/09 Prof. Hilfinger CS164 Lecture 8 13

Notation

• Idea: Split the string into two substrings
– Right substring (a string of terminals) is as yet

unexamined by parser
– Left substring has terminals and non-terminals

• The dividing point is marked by a I
– The I is not part of the string
– Marks end of next potential handle

• Initially, all input is unexamined: Ix1x2 . . . xn

2/12/09 Prof. Hilfinger CS164 Lecture 8 14

Shift-Reduce Parsing

• Bottom-up parsing uses only two kinds of actions:
Shift: Move I one place to the right, shifting a

 terminal to the left string
 E + (I int) ⇒ E + (int I)

 Reduce: Apply an inverse production at the handle.
 If E → E + (E) is a production, then
 E + (E + (E) I) ⇒ E +(E I)

Shift-Reduce Example

I int + (int) + (int)$ shift

int++int int()()

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E → int

int++int int()()

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E → int
E I + (int) + (int)$ shift 3 times

E

int++int int()()

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E → int
E I + (int) + (int)$ shift 3 times
E + (int I) + (int)$ red. E → int

E

int++int int()()

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E → int
E I + (int) + (int)$ shift 3 times
E + (int I) + (int)$ red. E → int
E + (E I) + (int)$ shift

E

int++int int()()

E

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E → int
E I + (int) + (int)$ shift 3 times
E + (int I) + (int)$ red. E → int
E + (E I) + (int)$ shift
E + (E) I + (int)$ red. E → E + (E)

E

int++int int()()

E

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E → int
E I + (int) + (int)$ shift 3 times
E + (int I) + (int)$ red. E → int
E + (E I) + (int)$ shift
E + (E) I + (int)$ red. E → E + (E)
E I + (int)$ shift 3 times

E

int++int int()

E

()

E

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E → int
E I + (int) + (int)$ shift 3 times
E + (int I) + (int)$ red. E → int
E + (E I) + (int)$ shift
E + (E) I + (int)$ red. E → E + (E)
E I + (int)$ shift 3 times
E + (int I)$ red. E → int

E

int++int int()

E

()

E

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E → int
E I + (int) + (int)$ shift 3 times
E + (int I) + (int)$ red. E → int
E + (E I) + (int)$ shift
E + (E) I + (int)$ red. E → E + (E)
E I + (int)$ shift 3 times
E + (int I)$ red. E → int
E + (E I)$ shift

E

int++int int()

E

()

EE

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E → int
E I + (int) + (int)$ shift 3 times
E + (int I) + (int)$ red. E → int
E + (E I) + (int)$ shift
E + (E) I + (int)$ red. E → E + (E)
E I + (int)$ shift 3 times
E + (int I)$ red. E → int
E + (E I)$ shift
E + (E) I $ red. E → E + (E) E

int++int int()

E

()

EE

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E → int
E I + (int) + (int)$ shift 3 times
E + (int I) + (int)$ red. E → int
E + (E I) + (int)$ shift
E + (E) I + (int)$ red. E → E + (E)
E I + (int)$ shift 3 times
E + (int I)$ red. E → int
E + (E I)$ shift
E + (E) I $ red. E → E + (E)
E I $ accept

E

E

int++int int()

E

()

EE

2/12/09 Prof. Hilfinger CS164 Lecture 8 26

The Stack

• Left string can be implemented as a stack
– Top of the stack is the I

• Shift pushes a terminal on the stack

• Reduce pops 0 or more symbols from the stack
(production rhs) and pushes a non-terminal on
the stack (production lhs)

2/12/09 Prof. Hilfinger CS164 Lecture 8 27

Key Issue: When to Shift or Reduce?

• Decide based on the left string (the stack)
• Idea: use a finite automaton (DFA) to decide

when to shift or reduce
– The DFA input is the stack up to potential handle
– DFA alphabet consists of terminals and nonterminals
– DFA recognizes complete handles

• We run the DFA on the stack and we examine
the resulting state X and the token tok after I
– If X has a transition labeled tok then shift
– If X is labeled with “A → β on tok” then reduce

LR(1) Parsing. An Example
int

E → int
on $, +

accept
on $

E → int
on), +

E → E + (E)
on $, +

E → E + (E)
on), +

(+

E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

I int + (int) + (int)$ shift
int I + (int) + (int)$ E → int
E I + (int) + (int)$ shift(x3)
E + (int I) + (int)$ E → int
E + (E I) + (int)$ shift
E + (E) I + (int)$ E → E+(E)
E I + (int)$ shift (x3)
E + (int I)$ E → int
E + (E I)$ shift
E + (E) I $ E → E+(E)
E I $ accept

int

E

)

2/12/09 Prof. Hilfinger CS164 Lecture 8 29

Representing the DFA

• Parsers represent the DFA as a 2D table
– As for table-driven lexical analysis

• Lines correspond to DFA states
• Columns correspond to terminals and non-

terminals
• In classical treatments, columns are split into:

– Those for terminals: action table
– Those for non-terminals: goto table

2/12/09 Prof. Hilfinger CS164 Lecture 8 30

Representing the DFA. Example

• The table for a fragment of our DFA:

…
rE → E+(E)rE → E+(E)7

s76
rE → intrE → int5

s6s54
s43

…
E$)(+int

E → int
on), +

E → E + (E) on $, +

(

int
3 4

56

7

)

E

2/12/09 Prof. Hilfinger CS164 Lecture 8 31

The LR Parsing Algorithm

• After a shift or reduce action we rerun the
DFA on the entire stack
– This is wasteful, since most of the work is

repeated

• So record, for each stack element, state of
the DFA after that state

• LR parser maintains a stack
〈 sym1, state1 〉 . . . 〈 symn, staten 〉

statek is the final state of the DFA on sym1 … symk

2/12/09 Prof. Hilfinger CS164 Lecture 8 32

The LR Parsing Algorithm

Let I = w1w2…wn$ be initial input
Let j = 1
Let DFA state 0 be the start state
Let stack = 〈 dummy, 0 〉

repeat
case table[top_state(stack), I[j]] of

shift k: push 〈 I[j], k 〉; j += 1
reduce X → α:
 pop |α| pairs,
 push 〈X, table[top_state(stack), X]〉
accept: halt normally
error: halt and report error

2/12/09 Prof. Hilfinger CS164 Lecture 8 33

Parsing Contexts

• Consider the state describing the situation at the I in
the stack E + (I int) + (int)

• Context:
– We are looking for an E → E + (• E)

• Have have seen E + (from the right-hand side
– We are also looking for E → • int or E → • E + (E)

• Have seen nothing from the right-hand side
• One DFA state describes a set of such contexts
• (Traditionally, use • to show where the I is.)

2/12/09 Prof. Hilfinger CS164 Lecture 8 34

LR(1) Items

• An LR(1) item is a pair:
 X → α•β, a
– X → αβ is a production
– a is a terminal (the lookahead terminal)
– LR(1) means 1 lookahead terminal

• [X → α•β, a] describes a context of the parser
– We are trying to find an X followed by an a, and
– We have α already on top of the stack
– Thus we need to see next a prefix derived from βa

2/12/09 Prof. Hilfinger CS164 Lecture 8 35

Convention

• We add to our grammar a fresh new start
symbol S and a production S → E
– Where E is the old start symbol
– No need to do this if E had only one production

• The initial parsing context contains:
 S → • E, $
– Trying to find an S as a string derived from E$
– The stack is empty

2/12/09 Prof. Hilfinger CS164 Lecture 8 36

Constructing the Parsing DFA. Example.

E → E+• (E), $/+

E → int
on $, +

accept
on $

E → E+(•E), $/+
E → •E+(E),)/+
E → •int,)/+

E → int•,)/+ E → int
on), +

E → E+(E•), $/+
E → E•+(E),)/+

and so on…

S → •E, $
E → •E+(E), $/+
E → •int, $/+

0

3

4

56

E → int•, $/+
1

S → E•, $
E → E•+(E), $/+

2

int

E +
(

E

int

2/12/09 Prof. Hilfinger CS164 Lecture 8 37

LR Parsing Tables. Notes

• Parsing tables (i.e. the DFA) can be
constructed automatically for a CFG

• But we still need to understand the
construction to work with parser generators
– E.g., they report errors in terms of sets of items

• What kind of errors can we expect?

2/12/09 Prof. Hilfinger CS164 Lecture 8 38

Shift/Reduce Conflicts

• If a DFA state contains both
 [X → α•aβ, b] and [Y → γ•, a]

• Then on input “a” we could either
– Shift into state [X → αa•β, b], or
– Reduce with Y → γ

• This is called a shift-reduce conflict

2/12/09 Prof. Hilfinger CS164 Lecture 8 39

Shift/Reduce Conflicts

• Typically due to ambiguities in the grammar
• Classic example: the dangling else
 S → if E then S | if E then S else S | OTHER
• Will have DFA state containing
 [S → if E then S•, else]
 [S → if E then S• else S, $]
• If else follows then we can shift or reduce

2/12/09 Prof. Hilfinger CS164 Lecture 8 40

More Shift/Reduce Conflicts

• Consider the ambiguous grammar
 E → E + E | E * E | int
• We will have the states containing
 [E → E * • E, +] [E → E * E•, +]
 [E → • E + E, +] ⇒E [E → E• + E, +]
 … …
• Again we have a shift/reduce on input +

– We need to reduce (* binds more tightly than +)
– Solution: declare the precedence of * and +

2/12/09 Prof. Hilfinger CS164 Lecture 8 41

More Shift/Reduce Conflicts

• In bison declare precedence and associativity
of terminal symbols:

 %left +
 %left *

• Precedence of a rule = that of its last terminal
– See bison manual for ways to override this default

• Resolve shift/reduce conflict with a shift if:
– input terminal has higher precedence than the rule
– the precedences are the same and right associative

2/12/09 Prof. Hilfinger CS164 Lecture 8 42

Using Precedence to Solve S/R Conflicts

• Back to our example:
 [E → E * • E, +] [E →E * E•, +]
 [E → • E + E, +] ⇒E [E →E • + E, +]
 … …

• Will choose reduce because precedence of
rule E → E * E is higher than of terminal +

2/12/09 Prof. Hilfinger CS164 Lecture 8 43

Using Precedence to Solve S/R Conflicts

• Same grammar as before
 E → E + E | E * E | int
• We will also have the states
 [E → E + • E, +] [E → E + E•, +]
 [E → • E + E, +] ⇒E [E → E • + E, +]
 … …
• Now we also have a shift/reduce on input +

– We choose reduce because E → E + E and + have
the same precedence and + is left-associative

2/12/09 Prof. Hilfinger CS164 Lecture 8 44

Using Precedence to Solve S/R Conflicts

• Back to our dangling else example
 [S → if E then S•, else]
 [S → if E then S• else S, x]
• Can eliminate conflict by declaring else with

higher precedence than then
• However, best to avoid overuse of precedence

declarations or you’ll end with unexpected
parse trees

2/12/09 Prof. Hilfinger CS164 Lecture 8 45

Reduce/Reduce Conflicts

• If a DFA state contains both
 [X → α•, a] and [Y → β•, a]
– Then on input “a” we don’t know which

production to reduce

• This is called a reduce/reduce conflict

2/12/09 Prof. Hilfinger CS164 Lecture 8 46

Reduce/Reduce Conflicts

• Usually due to gross ambiguity in the grammar
• Example: a sequence of identifiers

 S → ε | id | id S

• There are two parse trees for the string id
 S → id
 S → id S → id
• How does this confuse the parser?

2/12/09 Prof. Hilfinger CS164 Lecture 8 47

More on Reduce/Reduce Conflicts

• Consider the states [S → id •, $]
 [S’ → • S, $] [S → id • S, $]
 [S → •, $] ⇒id [S → •, $]
 [S → • id, $] [S → • id, $]
 [S → • id S, $] [S → • id S, $]
• Reduce/reduce conflict on input $
 S’ → S → id
 S’ → S → id S → id
• Better rewrite the grammar: S → ε | id S

2/12/09 Prof. Hilfinger CS164 Lecture 8 48

Relation to Bison

• Bison builds this kind of machine.
• However, for efficiency concerns, collapses

many of the states together.
• Causes some additional conflicts, but not

many.
• The machines discussed here are LR(1)

engines. Bison’s optimized versions are
LALR(1) engines.

2/12/09 Prof. Hilfinger CS164 Lecture 8 49

A Hierarchy of Grammar Classes

From Andrew Appel,
“Modern Compiler
Implementation in Java”

2/12/09 Prof. Hilfinger CS164 Lecture 8 50

Notes on Parsing

• Parsing
– A simple parser: LL(1), recursive descent
– A more powerful parser: LR(1)
– An efficiency hack: LALR(1)
– We use LALR(1) parser generators
– Earley’s algorithm provides a complete algorithm

for parsing context-free languages.

