Bottom-Up Parsing

Lecture 8 (From slides by G. Necula & R. Bodik)

Administrivia

- **Test I** during class on 10 March.
- Notes updated (at last)

Bottom-Up Parsing

- We' ve been looking at general context-free parsing.
- It comes at a price, measured in overheads, so in practice, we design programming languages to be parsed by less general but faster means, like top-down recursive descent.
- Deterministic bottom-up parsing is more general than top-down parsing, and just as efficient.
- Most common form is LR parsing
	- L means that tokens are read left to right
	- R means that it constructs a rightmost derivation

An Introductory Example

- LR parsers don 't need left-factored grammars and can also handle left-recursive grammars
- Consider the following grammar:

 $E \rightarrow E + (E)$ | int

- Why is this not LL(1)?
- Consider the string: $int + (int) + (int)$

The Idea

• LR parsing reduces a string to the start symbol by inverting productions:

 $sent$ ← input string of terminals while sent \neq S:

- Identify first β in sent such that $A \rightarrow \beta$ is a production and $S \rightarrow^* \alpha A \gamma \rightarrow \alpha \beta \gamma$ = sent
- Replace β by A in sent (so α A γ becomes new sent)
- Such α β 's are called handles

A Bottom-up Parse in Detail (1)

 $int + (int) + (int)$

$int + (int) + (int)$

A Bottom-up Parse in Detail (2)

 $int + (int) + (int)$ $E + (int) + (int)$

(handles in red)

$$
\begin{array}{ccc} E & & & \\ | & & | & \\ \hline \text{int} & + & (\text{int}) + (\text{int}) \end{array}
$$

A Bottom-up Parse in Detail (3)

```
int + (int) + (int)E + (int) + (int)E + (E) + (int)
```

$$
\begin{array}{ccc}\nE & E \\
\mid & \mid \\
\text{int} & + (\quad \text{int}) & + (\quad \text{int})\n\end{array}
$$

A Bottom-up Parse in Detail (4)

```
int + (int) + (int)E + (int) + (int)E + (E) + (int)E + (int)
```


A Bottom-up Parse in Detail (5)

2/12/09 Prof. Hilfinger CS164 Lecture 8 10

A Bottom-up Parse in Detail (6)

Where Do Reductions Happen

Because an LR parser produces a reverse rightmost derivation:

- If $\alpha\beta\gamma$ is step of a bottom-up parse with handle $\alpha\beta$
- And the next reduction is by $A \rightarrow \beta$
- Then γ is a string of terminals!
- ... Because $\alpha A_{\gamma} \rightarrow \alpha \beta \gamma$ is a step in a right-most derivation
- Intuition: We make decisions about what reduction to use after seeing all symbols in handle, rather than before (as for LL(1))

Notation

- Idea: Split the string into two substrings
	- Right substring (a string of terminals) is as yet unexamined by parser
	- Left substring has terminals and non-terminals
- The dividing point is marked by a I
	- The I is not part of the string
	- Marks end of next potential handle
- Initially, all input is unexamined: $1x_1x_2...x_n$

Shift-Reduce Parsing

• Bottom-up parsing uses only two kinds of actions: Shift: Move I one place to the right, shifting a terminal to the left string $E + (I \text{ int }) \Rightarrow E + (int I)$

> Reduce: Apply an inverse production at the handle. If $E \rightarrow E + (E)$ is a production, then $E + (E + (E) \cup) \Rightarrow E + (E \cup)$

Shift-Reduce Example

 I int + (int) + (int) $$$ shift

 $int + (int) + (int)$

 I int + (int) + (int) $$$ shift int $I + (int) + (int)$ \$ red. $E \rightarrow int$

 $int + (int) + (int)$

 I int + (int) + (int) $\frac{1}{2}$ shift int $I + (int) + (int)$ \$ red. $E \rightarrow int$ $E I + (int) + (int)$ \$ shift 3 times

 I int + (int) + (int) $\frac{1}{2}$ shift int $I + (int) + (int)$ \$ red. $E \rightarrow int$ $E I + (int) + (int)$ \$ shift 3 times $E + (int I) + (int)$ \$ red. $E \rightarrow int$

$$
\begin{array}{c}\nE \\
\frac{1}{2} \\
\frac{1}{2
$$

 I int + (int) + (int) $\frac{1}{2}$ shift int $I + (int) + (int)$ \$ red. $E \rightarrow int$ $E I + (int) + (int)$ \$ shift 3 times $E + (int I) + (int)$ \$ red. $E \rightarrow int$ $E + (E I) + (int)$ \$ shift

$$
\begin{array}{ccc}\nE & E \\
\hline\n\end{array}
$$

 I int + (int) + (int) $\frac{1}{2}$ shift int $I + (int) + (int)$ \$ red. $E \rightarrow int$ $E I + (int) + (int)$ \$ shift 3 times $E + (int I) + (int)$ \$ red. $E \rightarrow int$ $E + (E I) + (int)$ \$ shift $E + (E) I + (int)$ \$ red. $E \rightarrow E + (E)$

$$
\begin{array}{ccc}\nE & E \\
\Big/ & 1 & \\
\text{int} & + & (\text{int}) + & (\text{int}) \\
\uparrow & & \uparrow\n\end{array}
$$

Shift-Reduce Example

 I int + (int) + (int) $\frac{1}{2}$ shift int $I + (int) + (int)$ \$ red. $E \rightarrow int$ $E I + (int) + (int)$ \$ shift 3 times $E + (int 1) + (int)$ \$ red. $E \rightarrow int$ $E + (E I) + (int)$ \$ shift $E + (E) I + (int)$ \$ red. $E \rightarrow E + (E)$ $E I + (int)$ \$ shift 3 times

E $int + (int) + (int)$ E E

 I int + (int) + (int) $\frac{1}{2}$ shift int $I + (int) + (int)$ \$ red. $E \rightarrow int$ $E I + (int) + (int)$ \$ shift 3 times $E + (int 1) + (int)$ \$ red. $E \rightarrow int$ $E + (E I) + (int)$ \$ shift $E + (E) I + (int)$ \$ red. $E \rightarrow E + (E)$ $E I + (int)$ \$ shift 3 times $E + (int 1)$ \$ red. $E \rightarrow int$

E $int + (int) + (int)$ E E

 $int + (int) + (int)$

 $int + (int) + (int)$

The Stack

- Left string can be implemented as a stack – Top of the stack is the I
- Shift pushes a terminal on the stack
- Reduce pops 0 or more symbols from the stack (production rhs) and pushes a non-terminal on the stack (production lhs)

Key Issue: When to Shift or Reduce?

- Decide based on the left string (the stack)
- Idea: use a finite automaton (DFA) to decide when to shift or reduce
	- The DFA input is the stack up to potential handle
	- DFA alphabet consists of terminals and nonterminals
	- DFA recognizes complete handles
- We run the DFA on the stack and we examine the resulting state X and the token tok after I
	- If X has a transition labeled tok then shift
	- If X is labeled with " $A \rightarrow \beta$ on tok" then reduce

LR(1) Parsing. An Example

 I int + (int) + (int)\$ shift int $I + (int) + (int)$ \$ $E \rightarrow int$ $E I + (int) + (int)$ \$ shift(x3) $E + (int) + (int)$ \$ $E \rightarrow int$ $E + (E I) + (int)$ \$ shift $E + (E) + (int)$ \$ $E \rightarrow E + (E)$ $E I + (int)$ \$ shift (x3) $E + (int 1)$ \$ $E \rightarrow int$ $E + (E \cup)$ \$ shift $E + (E)$ | \$ $E \rightarrow E + (E)$ E I \$ accept

Representing the DFA

- Parsers represent the DFA as a 2D table
	- As for table-driven lexical analysis
- Lines correspond to DFA states
- Columns correspond to terminals and nonterminals
- In classical treatments, columns are split into:
	- Those for terminals: action table
	- Those for non-terminals: goto table

Representing the DFA. Example

• The table for a fragment of our DFA:

The LR Parsing Algorithm

- After a shift or reduce action we rerun the DFA on the entire stack
	- This is wasteful, since most of the work is repeated
- So record, for each stack element, state of the DFA after that state
- LR parser maintains a stack $\langle \text{sym}_1, \text{state}_1 \rangle \dots \langle \text{sym}_n, \text{state}_n \rangle$ state_k is the final state of the DFA on sym₁ ... sym_k

The LR Parsing Algorithm

```
Let I = w_1w_2...w_n$ be initial input
Let j = 1Let DFA state 0 be the start state
Let stack = \langle dummy, 0 \ranglerepeat
         case table[top_state(stack), I[j]] of
                  shift k: push \langle I[j], k \rangle; j += 1
                  reduce X \rightarrow \alpha:
                       pop |\alpha| pairs,
                       push 〈X, table[top_state(stack), X]〉
                  accept: halt normally
                  error: halt and report error
```
Parsing Contexts

- Consider the state describing the situation at the I in the stack $E + (int) + (int)$
- Context:
	- We are looking for an $E \rightarrow E + (•E)$
		- Have have seen $E + ($ from the right-hand side
	- We are also looking for $E \rightarrow \bullet$ int or $E \rightarrow \bullet E + (E)$
		- Have seen nothing from the right-hand side
- One DFA state describes a set of such contexts
- (Traditionally, use to show where the I is.)

LR(1) Items

- An $LR(1)$ item is a pair: $X \rightarrow \alpha \cdot \beta$, a
	- $-\mathsf{X}\rightarrow\alpha\beta$ is a production
	- a is a terminal (the lookahead terminal)
	- LR(1) means 1 lookahead terminal
- $[X \rightarrow \alpha \cdot \beta, a]$ describes a context of the parser
	- We are trying to find an X followed by an a , and
	- We have α already on top of the stack
	- $-$ Thus we need to see next a prefix derived from βa

Convention

- We add to our grammar a fresh new start symbol S and a production $S \rightarrow E$
	- Where E is the old start symbol
	- No need to do this if E had only one production
- The initial parsing context contains: $S \rightarrow \bullet E, \pm \bullet$
	- Trying to find an S as a string derived from E\$
	- The stack is empty

Constructing the Parsing DFA. Example.

LR Parsing Tables. Notes

- Parsing tables (i.e. the DFA) can be constructed automatically for a CFG
- But we still need to understand the construction to work with parser generators
	- E.g., they report errors in terms of sets of items
- What kind of errors can we expect?

Shift/Reduce Conflicts

- If a DFA state contains both $[X \rightarrow \alpha \cdot a\beta, b]$ and $[Y \rightarrow \gamma \cdot a]$
- Then on input " a" we could either
	- Shift into state $[X \rightarrow \alpha a \cdot \beta, b]$, or
	- Reduce with $Y \rightarrow Y$
- This is called a shift-reduce conflict

Shift/Reduce Conflicts

- Typically due to ambiguities in the grammar
- Classic example: the dangling else $S \rightarrow$ if E then S | if E then S else S | OTHER
- Will have DFA state containing

 $[S \rightarrow if \ E \ then \ S^{\bullet},$ else]

 $[S \rightarrow \text{if } E \text{ then } S^{\bullet} \text{ else } S, \quad \$]$

• If else follows then we can shift or reduce

More Shift/Reduce Conflicts

… …

- Consider the ambiguous grammar $E \rightarrow E + E \mid E \times E \mid int$
- We will have the states containing

 $[E \rightarrow E^{\star} \cdot E, +]$ $[E \rightarrow E^{\star} E \cdot, +]$ $[E \rightarrow \cdot E + E, +] \Rightarrow^{E} [E \rightarrow E \cdot + E, +]$

- Again we have a shift/reduce on input +
	- We need to reduce $(*$ binds more tightly than $+)$
	- Solution: declare the precedence of $*$ and $*$

More Shift/Reduce Conflicts

• In bison declare precedence and associativity of terminal symbols:

%left +

%left *

- Precedence of a rule = that of its last terminal
	- See bison manual for ways to override this default
- Resolve shift/reduce conflict with a shift if:
	- input terminal has higher precedence than the rule
	- the precedences are the same and right associative

Using Precedence to Solve S/R Conflicts

• Back to our example:

 $[E \rightarrow E^* \cdot E, +]$ $[E \rightarrow E^* E^*, +]$ $[E \rightarrow \cdot E + E, +] \Rightarrow^{E} [E \rightarrow E \cdot + E, +]$ … …

• Will choose reduce because precedence of rule $E \rightarrow E^*E$ is higher than of terminal +

Using Precedence to Solve S/R Conflicts

- Same grammar as before $E \rightarrow E + E \mid E \times E \mid int$
- We will also have the states

… …

 $[E \rightarrow E + \cdot E, +]$ $[E \rightarrow E + E \cdot, +]$ $[E \rightarrow e^- E + E, +] \Rightarrow^E [E \rightarrow E \bullet + E, +]$

- Now we also have a shift/reduce on input +
	- We choose reduce because $E \rightarrow E + E$ and + have the same precedence and + is left-associative

Using Precedence to Solve S/R Conflicts

- Back to our dangling else example $[S \rightarrow \text{if } E \text{ then } S^{\bullet},$ else] $[S \rightarrow if E then S \bullet else S, x]$
- Can eliminate conflict by declaring else with higher precedence than then
- However, best to avoid overuse of precedence declarations or you 'll end with unexpected parse trees

Reduce/Reduce Conflicts

• If a DFA state contains both

 $[X \rightarrow \alpha$ •, a] and $[Y \rightarrow \beta$ •, a]

- Then on input "a" we don't know which production to reduce
- This is called a reduce/reduce conflict

Reduce/Reduce Conflicts

- Usually due to gross ambiguity in the grammar
- Example: a sequence of identifiers $S \rightarrow \varepsilon$ | id | id S
- There are two parse trees for the string id $S \rightarrow id$ $S \rightarrow id S \rightarrow id$
- How does this confuse the parser?

More on Reduce/Reduce Conflicts

- Consider the states $[S \rightarrow id \bullet, \quad $]$ $[S' \rightarrow \bullet S, \quad \$]$ $[S \rightarrow id \bullet S, 5]$ $[S \rightarrow \bullet, \quad \$] \Rightarrow^{\text{id}} [S \rightarrow \bullet, \quad \$]$ $[S \rightarrow \bullet \text{ id}, \quad $]$ $[S \rightarrow \bullet \text{ id}, \quad $]$ $[S \rightarrow \cdot \text{id} S, 5]$ $[S \rightarrow \cdot \text{id} S, 5]$
- Reduce/reduce conflict on input \$

 S' $S' \rightarrow S \rightarrow id$ S' $S' \rightarrow S \rightarrow id S \rightarrow id$

• Better rewrite the grammar: $S \rightarrow \varepsilon$ id S

Relation to Bison

- Bison builds this kind of machine.
- However, for efficiency concerns, collapses many of the states together.
- Causes some additional conflicts, but not many.
- \cdot The machines discussed here are LR(1) engines. Bison 's optimized versions are LALR(1) engines.

A Hierarchy of Grammar Classes

Notes on Parsing

- Parsing
	- A simple parser: LL(1), recursive descent
	- A more powerful parser: LR(1)
	- An efficiency hack: LALR(1)
	- We use LALR(1) parser generators
	- Earley's algorithm provides a complete algorithm for parsing context-free languages.