
CS 164 Section Notes on Lexing (2/1/2010)
Bill McCloskey

Consider the following input to flex.

%option noyywrap

%{
enum { EOF_TOK, IN, INTO, ID };
char *names[] = { "EOF", "IN", "INTO", "ID" };
%}

%%

in { return IN; }
into { return INTO; }
[a-z]+ { return ID; }
[] {}

%%

int main(int argc, char *argv[])
{
while (1) {
int t = yylex();
if (t == EOF_TOK) break;
printf("* Got token %s (%s)\n", names[t], yytext);

}
return 0;

}

The four lines after the first %% line are the rules. Each one is a regular
expression followed by an action. When the given regular expression is matched,
the code from the action is run. The first three actions return an enumeration
identifying the token type. Whitespace is ignored.

If you have the flex tool installed, you can save this code to a file (say
tokenize.l) and then run flex tokenize.l on the command line. This will
generate lex.yy.c. Then compile this via gcc lex.yy.c and run a.out. Here
is a sample run.

hello a in into x
* Got token ID (hello)
* Got token ID (a)
* Got token IN (in)
* Got token INTO (into)
* Got token ID (x)

1

1 What flex does (approximately)

First, each regular expression is converted to an NFA.
2 3

i
4n

5 6
i

7n 8
t

9o

α β
[a-z]

[a-z]

γ δ
[]

Then the NFAs are combined into a single NFA that accepts any of the
tokens.

1

2
ε

3
i

4n

5ε 6
i

7n 8
t

9o

α

ε

β
[a-z]

[a-z]

γ

ε

δ
[]

Next, this NFA is converted to a DFA via the subset construction. For
more details on this algorithm, look up the Wikipedia article on the subset
construction.

s0:{1, 2, 5, α, γ}

s1:{3, 6, β}

i

s2:{4, 7, β}
n

s3:{8, β}
t

s4:{9, β}
o

s5:{β}
[a-hj-z]

[a-z]

[a-mo-z]
[a-su-z] [a-np-z]

[a-z]

s6:{δ}

[]

This diagram omits the state ∅, which we will call s7. It is a dead state. Every
other state except the start state goes to it on the space character. Also, s6
goes to the dead state on every input character.

2

From this DFA flex constructs a table. To find where to go from state s on
input c, find the row containing s under the “State” column and scan across to
the column labeled c.

State [a-hj-mp-su-z] i n t o []

s0 s5 s1 s5 s5 s5 s6
s1 s5 s5 s2 s5 s5 s7
s2 s5 s5 s5 s3 s5 s7
s3 s5 s5 s5 s5 s4 s7
s4 s5 s5 s5 s5 s5 s7
s5 s5 s5 s5 s5 s5 s7
s6 s7 s7 s7 s7 s7 s7

Notice how we used the same column for every character in the class [a-hj-mp-su-z].
To save memory, flex also does this. It uses an array to map each input char-
acter to an equivalence class. It stores the transition function for the DFA in
terms of equivalence classes rather than characters.

Let’s look at some sample inputs. First consider the input “inside ” (notice
the space at the end). flex will run it through the DFA as follows.

s0 i−→ s1 n−→ s2 s−→ s5 i−→ s5 d−→ s5 e−→ s5 −→ s7

The final states are underlined. flex will stop processing when it reaches a
dead state (i.e., a state that cannot possibly reach a final state). At this point,
it looks back to the last time it was in a final state. Here, it is upon reaching
s5 after reading e. Thus, “inside” forms the token.

To choose the action to perform, flex looks at the original NFA states
that generated s5—in this case, {β}. The state β was from the third rule in
tokenize.l, the ID rule. flex executes the action associated with this rule.

Now consider the input “in ”. Running the DFA gives the following.

s0 i−→ s1 n−→ s2 −→ s7

This time s2 was the last final state reached. It corresponds to the NFA states
{4, 7, β}. Of these, only 4 and β are final states. They correspond to different
rules in the tokenize.l file. To disambiguate, flex chooses the first rule, IN,
to execute because the programmer listed it first.

Conclusion

• When multiple rules can match the input, flex chooses the one that
produces the longest match. It does so by running the DFA until it gets
to a dead state. Then it finds the last input position in which it was in a
final state and selects a rule based on state.

• When there are two rules that both produce a match of the same length,
flex chooses the one that was listed first in the .l file.

3

