
Worksheet CS 164
4/5/2010

RUNTIME ORGANIZATION (Solutions)

In the Objective Caml language, we can define the following functions.

(* Compute n choose k *)

let binom n k = ...

let test x y =
let a = binom x y in
let b = binom x (y+1) in
a + b (* Return the sum *)

If we compile this code and then disassemble the result we get the following (using Intel syntax):

08049950 <camlTest__test_61>:
8049950: sub esp,0xc ; esp -= 12

8049953: mov DWORD PTR [esp+0x4],eax ; *(esp+4) = eax

8049957: mov DWORD PTR [esp],ebx ; *esp = ebx

804995a: call 8049930 <camlTest__binom_58> ; call binom

804995f: mov DWORD PTR [esp+0x8],eax ; *(esp+8) = eax

8049963: mov ebx,DWORD PTR [esp] ; ebx = *esp

8049966: add ebx,0x2 ; ebx += 2

8049969: mov eax,DWORD PTR [esp+0x4]
804996d: call 8049930 <camlTest__binom_58>
8049972: mov ebx,DWORD PTR [esp+0x8]
8049976: lea eax,[ebx+eax*1-0x1] ; eax = ebx + eax - 1

804997a: add esp,0xc
804997d: ret

Describe the calling conventions used for binom. Where are the arguments n and k stored? Where is the
result located on return?

The argument n is passed in the eax register, and k in ebx. We can tell this because eax has
the same value both times binom is called, but the second time ebx’s value is incremented (by 2
instead of 1 because OCaml uses the least significant bit as a tag bit). The return value is passed
in eax, which we can tell because we can trace the two values added for a + b back to the values
of eax right after the two calls to binom.

Draw a diagram showing the layout of the stack and the register file right before the second call to binom.
Your diagram should show where each argument and local variable is stored.

Stack (growing downward):
RA
a
x
y

Registers:
eax: x
ebx: y + 1



Now consider the following assembly code.

080483b4 <test>:
80483b4: push ebp ; esp -= 4; *esp = ebp

80483b5: mov ebp,esp
80483b7: sub esp,0x18
80483ba: mov DWORD PTR [ebp-0x14],ecx
80483bd: mov DWORD PTR [ebp-0x18],edx
80483c0: mov eax,DWORD PTR [ebp-0x14]
80483c3: mov edx,DWORD PTR [eax]
80483c5: mov eax,DWORD PTR [ebp-0x18]
80483c8: mov eax,DWORD PTR [eax]
80483ca: imul edx,eax ; edx = edx * eax

80483cd: mov eax,DWORD PTR [ebp-0x14]
80483d0: mov ecx,DWORD PTR [eax+0x4]
80483d3: mov eax,DWORD PTR [ebp-0x18]
80483d6: mov eax,DWORD PTR [eax+0x4]
80483d9: imul eax,ecx
80483dc: lea eax,[edx+eax*1] ; eax = edx + eax

80483df: mov DWORD PTR [ebp-0x4],eax
80483e2: mov eax,DWORD PTR [ebp-0x4]
80483e5: leave ; esp = ebp; pop ebp

80483e6: ret

This function takes two parameters, passed in registers ecx and edx respectively. Its result is returned
in register eax. Decompile (translate) this assembly into equivalent C code. Hint: This code implements a
well-known mathematical operation.

The function implements a two-dimensional dot product.

struct vector_t {
int x;
int y;

};

int dot(struct vector_t* u, struct vector_t* v) {
int p;
p = u->x * v->x + u->y * v->y;
return p;

}

Reasoning: The function uses three different offsets from ebp, so we have three local variables.
Two of these (ebp-0x14 and ebp-0x18) correspond to the arguments; we know this because the
argument registers are stored to them and they are never overwritten. The third variable (ebp-
0x4) is an int because it stores a sum of products of 32-bit integers.

We can tell the arguments are pointers because we dereference them. We use two offsets with
each of them and treat the dereferenced values as ints, so we know they point to int arrays or
structs with int members. We interpret them as structs here because we recognize the form of the
dot product, but it would be equally correct to give the arguments type int *.


