CS 164, Spring 2010 CS 164: Homework #5 P. N. Hilfinger
Due: Friday, 23 February 2010

See the files in “cs164/hw/hwb or the staff hwd repository. Unless the problem specifies
otherwise, please put your solutions in a file named hw5.txt in your hw5 subdirectory.

1. [From Aho, Sethi, and Ullman| Consider the following ambiguous grammar:
E - E’+ E | E°»E | "CE’)’ | id

and this parsing table for it (end-of-input, , is never shifted):

STATE | id ’+’ x> >)’ A E
0 s3 s2 sl
1 s4 sb acc
2 s3 s2 s6
3 r4 r4 r4 r4
4 s3 s2 s7
) s3 s2 s8
6 s4 sb s9
7 rl sb rl rl
8 r2 r2 r2 r2
9 r3 r3 r3 r3

In this table, sn denotes to a transition in the state machine (“go to state n on seeing this
lookahead”) and rn means “reduce the last symbols just scanned by the state machine (i.e.,
on top of the parsing stack) using production n.” The productions are numbered left to right
from 1; production 1is £ — E ’+’ E. Blank entries indicate errors. The start state is 0. Use
the table to produce a reverse rightmost derivation of the string id+id+id*(id+id). That
is, give the sequence of reductions discovered by the parser.

Homework #5 2

2.

Since the grammar of problem 1 is ambiguous, we had to add information to get a

table out of it, since otherwise, some of the entries would be unresolved. There are several
possible parsing tables for it, depending on how we wish to resolve ambiguities. Show the
modifications to the table in problem 1 that are necessary to

a.

b.

3.

Give >+’ and ’*’ equal precedence, and making them left associative.

Give ’+’ higher precedence than ’>*’, and making them left associative.

. Give ’+’ lower precedence than ’#*’, and make ’+’ right associative (’>*’ stays left

associative).

. Make it illegal to mix different operators without parenthesization. For example, to

make the example in Exercise 1, above, illegal.

Consider the string id+id (id), which is illegal according to the grammar of the preceding

two problems.

a.

Show what happens when you try to parse it using the parsing table from problem 1.
That is, show all the steps taken by the parser up to the point where the machine finds
no valid transition.

. Now modify the table as follows: for each row that contains at least one reduction

(rn), replace all the empty (error) entries in the action table for that row (i.e., the
part between the vertical lines) with that reduction. For example, all entries in row 9
(except for E) would become r3, and all entries except that for ’*’ (and E) in row 7
would become r1. Show what happens when you try to parse the illegal string with
this revised table. (This optimization—introducing default rules—makes tables more
compressible; the question is whether it causes the parser to recognize illegal sentences.)

Homework #5 3

4. Here’s another LR parsing table.

STATE - 2/ 0 2 0> i oy || E F P S
0 rl rl rl rl rl rl rl sl
1 acc s3 s4
3 sb
4 r2 r2 r2 r2 r2 r2 r2
5 s7 s6 s8
6 r7 r7 r7 s9 r7 r7 r7 s10
7 rd rd rd r4 r4 r4 rd
8 sl1
9 s7 s6 s12
10 r3 r3 r3 r3 r3 r3 r3
11 rb5 rb5 rb5 rb5 r5 r5 r5
12 s13
13 r6 r6 r6 r6 r6 r6 r6

The reductions here have the following properties:

rl: 0 symbols — S
r2: 2 symbols — S
r3: 2 symbols — E
r4: 1 symbols — E
r5: 4 symbols — F
r6: 3 symbols — P
r7: 0 symbols — P

For example, production #2 has nonterminal S on the left-hand side and two symbols on the
right-hand side (but I won’t tell you what they are).
By considering the parse of the following sentence:

viv<v>/v:i/H

reconstruct the grammar (that is, determine what symbols appear on the right-hand sides of
the seven productions).

5. Team Exercise: [As in HW#4, turn in this and the next exercise as a team, tagged
“proj1-N.”] Fill out your set of test cases from HW#4 to exercise all the valid constructs of
the grammar, all the lexical features, and at least the violations of lexical rules—improper in-
dentation, improperly terminated strings, improperly formed numerals (e.g., ‘019’ and ‘21x’).

6. Team Exercise: Complete enough of the lexer and grammar to parse and produce trees
for programs consisting of print statements whose expressions are simple identifiers, numerals,
and strings:

print
print x, y

Homework #5

print 31, "Hello!",
print >>aFile, 42

