
CS 164, Spring 2010 CS 164: Homework #6 P. N. Hilfinger

Due: Tuesday, 30 March 2010

1. The Algol 68 language introduced an expression called the case conformity clause.
Here’s one version of it:

case I := E0 in T1: E1; T2: E2; ...; Tn: En; esac

where the Ei are expressions (i.e., with values), I is an identifier, and the Ti are types. The
idea here is that the program first evaluates E0, and assigns I its value. If the dynamic
type of I is Ti for some i (or a subtype of Ti), the program evaluates Ei and yields its value
as the value of the entire clause (it will be a run-time error if no clauses match). If more
than one Ti fits, the program chooses one arbitrarily and evaluates it (the expression must
type properly regardless of which choice is made). The problem is come up with a static
typing rule for this expression. Assume that the AST for the case conformity clause above
is represented in Prolog notation as

case_conform(Î , Ê0,[case(T̂1, Ê1),...,case(T̂n, Ên)])

where x̂ is the AST for x. So the problem is to find an appropriate replacement for ‘??’ in

typeof(case_conform(I,E0,Clauses), T, Env) :- ??

The implication here is that all the clauses have to produce values of some common type,
T. There is no need to know the rest of this language to do this.

Produce two Prolog version of this rule under the following alternative assumptions:

Version 1: Require that all the Ti be subtypes of the static type of E0.

Version 2: Require that at least one clause have a Ti that is a subtype of E0’s type,
but allow Ei in clauses for which Ti is not a subtype of E0’s type to have any type
at all.

So, under version 2, it’s OK to write

N + case x := head(shapeList) in

Rectangle : width(x);

Circle : radius(x);

Elephant : "Hi, there!"

esac

assuming that shapeList is a list of Shapes, types Rectangle and Circle are subtypes
of Shape, and Elephant is not. Even though the type of the Elephant case is presumably
incompatible with that of the other two (presumably numeric), we can ignore it, since the
last case can never be taken. Under version 1, however, this case expression is illegal.

See the skeletons in hw6/case_conform1.pl and hw6/case_conform2.pl. To do ver-
sion 2, you’ll need some “impure” Prolog. The following pair of rules (in the order given)
define notok(X) to succeed if ok(X) cannot be satisfied:

1



Homework #6 2

notok(X) :- ok(X), !, fail.

notok(_).

The cut symbol, ‘!’, basically says, “always succeed, but if you ever have to backtrack past
this point, give up on the goal notok immediately and don’t try any other rules for notok.”
So once you find that ok(foo) is satisfiable, you hit the cut symbol and then immediately
fail (the goal fail has no rules, so that it always fails).

2. In Java, the following is legal:

String[] Y;

Object[] X;

...

X = Y;

That is, an array of T1 may be assigned to a variable of type array-of-T2 as long as T1 is a
subtype of T2. As it turns out, this rule is unsound in the sense that because of it, certain
type errors can only be discovered at execution time, requiring a (somewhat) expensive
check that slows down some operations. Give an example of how this can happen (by
which I mean an actual Java program).

3. Write a legal Python program that simply prints “static” and that would also be
legal if Python used dynamic scoping, but would print “dynamic” instead.

4. Show how the type rules from slide 15 of Lecture 13 work to determine the types of
Y, g, and fact in

def Y f = f (Y f)

def g h x = if x = 0 then 1 else h(x-1) * x fi

def fact x = Y g x

Assume that ‘-’ and ‘*’ obey the same rules as ‘+’. (Aside: for obvious reasons, Y, the
“paradoxical combinator,” won’t actually work unless this language uses normal-order
evaluation, in which expressions are not evaluated until their value is actually used in a
primitive operation. However, evaluation is not the point here.)

5. In the project, we don’t deal with method overloading, so let’s take a shot in the
homework. The Python file overload.py contains a skeleton that defines a simple AST
with two types of node:

Leaf nodes, labeled with an identifier string that names a type.

Call nodes, containing labeled with a function identifier and having 0 or more children
(each an AST).



Homework #6 3

It also defines a type Signature, which stands for the type of a function (that is, its
argument types and its return type). We’ll define an environment as a dictionary mapping
function names to lists of function signatures (thus representing sets of overloadings of a
given function name).

The idea is to figure out the particular signature to choose for each of the function
names in call nodes so as to make all signatures match the argument types.

Fill in the two functions:

resolve1(T, Env): As in Java or C++, require that each signature be selected unam-
biguously using only the types of the arguments. In other words, given a call such as
f(g(Int)), the type of g(Int) must be determined unambiguosly without reference
to the fact that its result will be an argument to f.

resolve2(T, Env): As in the Ada language, find signatures for all functions so that the
entire AST matches, In other words, given a call such as f(g(Int)), its OK to have
two possible overloadings of g that take Int arguments, as long as they have different
return types and only one return type fits an overloading of f.


