CS 164, Spring 2010 CS 164: Homework #8 P. N. Hilfinger

Due: Friday, 30 April 2010

1. A definition (that is, an assignment) of a simple variable is said to reach a point in the
program if it might be the last assignment to that variable executed before execution reaches
that point in the program. So for example, definition A below reaches points B and C, but
not D:

x =3 # A
if a < 2:

x =2

pass #D
else:

y=5

pass # B
pass # C

Suppose we want to compute R(p), the set of all definitions that reach point p in a pro-
gram. Give forward rules (in the style of the lecture) for computing the reaching definitions,
Ryt (s) for a statement s (the set of definitions that reach the point immediately after the
statement) as a function of R;; (s) (the definitions that reach the beginning) for each assign-
ment statement s and give the rules for computing R;,,(s) as a function of the Rt values
of its predecessors.

2. Suppose that L is a set of basic blocks, a subset of some large control-flow graph, G.
Suppose also that P is a basic block outside of L with a single successor, that this successor is
in L, and that P dominates the blocks in L, meaning that all paths from the entrance block of
G to a block in L go through P first (typically L is a loop, and we call P a preheader). Finally,
suppose that you have computed all reaching definitions (see last exercise) at all points in the
program. How do you use this information to determine whether the calculation of a certain
expression in one of the blocks of L, such as the right-hand side of the assignment statement

X :=axb

may be moved out of L and to the end of P?

3. Consider the loop

for i := 0 to n-1 do
for j := 0 to n-1 do
for k¥ := 0 to n-1 do
cli,jl := cli,j]l + ali,k] * blk,j]

In this nested loop, a, b, and ¢ are two-dimensional arrays of 4-byte integers. Here is a
translation into intermediate code (assume that a, b, and c¢ are addresses of static memory,
and that all other variables are in registers):



Homework #8

Entry:
i:=0
goto L6

L1:

j =0
goto L5

L2:
k=0
goto L4

L3:
tl := 4
t2 =t
t3 := 4
t4d = t
th = %
t6 := 4
t7 =t
t8 := 4
t9 =t
t10 :=

#1
#2

#3
#4

#5
#6

* n #7
1% 1 #8
* ] #9
2 + t3 #10
(t4 + ©) #11
* n #12
6 * i #13
* k #14
7 + t8 #15
*(t9 + a) #16

tll := 4 x n
t12 = tl1l *x k
t13 =4 * j
t14 := t12 + t13
t15 := *(t14 + b)
t16 := t10 * t1b
t17 := tb + t16
t18 =4 x n
t19 := t18 * i
t20 =4 * j
t21 := t19 + t20
*x(t21+c) := t17
k:=k +1

L4:
if k < n: goto L3
jmiea

L5:
if j < n: goto L2
i=1i4+1

L6:
if 1 < n: goto L1

Exit:

To notate accesses to memory, we’ve used C-like notation:

K is an integer literal, and L is a static-storage label (a constant address in memory). Unlike
C, the additions here are just straight addition: no automatic scaling by word size.

a.

rl := *(r
* (r1+K)

*K := r3
r3 := xK

According to this code, how are the elements of the three two-dimensional arrays laid
out in memory (in what order do the elements of the arrays appear)?

2+K)

=12

the flow graph.

¢ functions).

copy propogation, etc.

#17
#18
#19
#20
#21
#22
#23
#24
#25
#26
#27
#28
#29

#30
#31

#32
#33

#34

. Divide the instructions into basic blocks (feel free to refer to them by number) and show

. The program is almost in SSA form, except for variables i, j, and k. Introduce new
variables and ¢ functions as needed to put the program into SSA form (try to minimize

. Now optimize this code as best you can, moving assignments of invariant expressions
out of loops, eliminating common subexpressions, removing dead statements, performing



