
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS 164 P. N. Hilfinger
Spring 2010

Project #2: Static Analyzer (revision 8, 4/6/2010)

Due: Tuesday, 6 April 2010

The second project picks up where the last left off. Beginning with the AST you produced
in Project #1, you are to perform a number of static checks on its correctness, annotate it
with information about the meanings of identifiers, and perform one rewrite. Your job is
to hand in a program (and its testing harness), including adequate internal documentation
(comments), and a thorough set of test cases, which we will run both against your program
and everybody else’s.

1 Summary

Your program is to perform the following processing:

1. Add a list of indexed declarations, as described in §5.

2. Add a declaration index to the end of each id nodes, linking it to a declaration. This
is also described in §5. There are a few exceptions to this rule: don’t bother attaching
declarations to the identifiers in “binop,” “unop,” “aug assign,” or “comparison” nodes.

3. Rewrite all lambda expressions into explicit functions, as described in §6.

4. Rewrite method calls and allocation expressions to use new AST nodes not produced
by the parser, as described in §6 and §4.

5. Enforce the restrictions described in §7.

The remaining sections describe these in more detail.

1

Project #2 2

2 Input and Output

You can start either from a parser that we provide, or you can augment your own parser. In
either case, the output from your program will look essentially like that from the first project,
but with some additional annotations. We’ll augment pyunparse to show your annotations.

Python is a very dynamic language; one may insert new fields and methods into classes or
even into individual instances of classes at any time. One may redefine functions, methods,
modules, and classes at will. For this project, we will introduce a few restrictions, but there
will be many places where we can’t definitively say that something is an error.

You will add information to identifiers indicating their type. In Python, the compiler
will, in general, know very little about the types of things, so that the best we can usually
say is that “variable α has static type any,” where any denotes the supertype of all types.
Sometimes, however, as in the case of functions, you will be able to at least check parameter
counts.

3 New Syntax

We’ve added a small piece of syntax to the language. If you want to use your own parser,
you’ll find it is not difficult to add.

A target of any assignment (which includes the control variables of for nodes) may have
the form “I::T”, where ‘::’ is a new lexeme and I and T are identifiers. This corresponds
to the AST node

(typed id N (id N I) (id N T)),

and indicates that the variable denoted by I here has type T (which must be a class). This
typing applies to all instances of I that refer to the same variable as this one (so that in

a = "Hello"

def f(x):

a::Int = x

print a + 3

the ‘a’ defined in ‘f’ has integer type, but the one defined outside ‘f’ has unknown type.

4 New AST Nodes

Besides “typed id” (see §3), we introduce the following new nodes, which you’ll use to rewrite
certain parts of the tree (but which the parser could not generate since it lacked the necessary
semantic information).

(call method N I (E1 E2 ...)) represents E1.I(E2, . . .) when E1 denotes an object (as
opposed to a module or type).

Project #2 3

(call method ident N I (E1 E2 ...)) is the same as call method, except that it de-
notes a construct that returns the value of E1 rather than the value returned by the
method.

(new N T) When the first child of a “call” node denotes a type, T , that call actually creates
a new object of the type. This node denotes a construct that creates and returns a new,
uninitialized instance of T .

5 Output Format

The output ASTs differ from input ASTs in these respects:

• Identifier nodes will have an extra annotation at the end:

(id N name D)

where D ≥ 1 is an integer declaration index.

• Compilations will now have the syntax

Compilation : ’(’ "module" N Stmt* ’)’ Decl*

The Decls, described in Table 1, represent declarations. They are indexed by the
declaration indices used in id nodes, and appear in order according to their index.

There is one declaration index (and corresponding declaration node) for each distinct
declaration in the program: each imported module, class definition, local variable, parameter,
method definition, and instance variable. Table 1 shows the formats of the declaration nodes.

Use the special declaration unknowndecl for the (many) cases where Python is too dy-
namic to give static information about what kind of entity one is dealing with. So, in

import foo, bar

j = foo.A()

k = bar.A()

j.i = foo.i + bar.i + k.i

there could be the following declaration nodes:

(moduledecl 99 __main__)

(moduledecl 100 foo) (moduledecl 101 bar)

(localdecl 102 j 99 (type 0)) (localdecl 103 k 99 (type 0))

(unknowndecl 104 A 100) (unknowndecl 105 A 101)

(unknowndecl 106 i 100) (unknowndecl 107 i 101)

(unknowndecl 108 i 0)

Declaration 108 here handles both j.i and k.i. (We started numbering declarations at 99
here to suggest the existence of the declarations in the standard prelude, described in §9.)

Project #2 4

The set of declarations is not the same as a symbol table (or environment). It is an
undifferentiated set of all declarations without regard to scopes, declarative regions, etc.
You’ll need some entirely separate data structure (which you’ll never output) to keep track of
the mappings of identifiers to declarations at various points in the program. Some declarations
don’t correspond to anything you can point to or name in the program. For example, under
our rules, the module names __main__ and __builtin__ are not defined within your program,
and references to them are errors, even though those modules certainly exist and contain lots
of definitions you can reference.

6 Rewriting

For the sake of the code generator (and to some extent, to simplify parts of semantic analysis),
your program must perform several rewritings.

Lambda expressions. In the output tree, replace all lambda expressions with explicit
functions. For example, an input program that looks like this:

def f (x, L):

return map (lambda y: y+x, L)

would produce the same kind of tree that would be generated by

def f (x, L):

def __lambda1__ (y):

return y+x

return map (__lambda1__, L)

Place the defs for all lambda expressions in a function (or the main module) at the beginning
of the body of that function (or the main module). For simplicity, we’ll just assume that
names of the form lambdaN are not explicitly allowed in source programs.

Allocators. Whenever you encounter a “call” node whose first operand denotes a class
(which is Python’s way of writing the Java or C++ new operator):

(call N T (E1 E2 ...)),

convert it to the expression

(call method ident N (id N init) ((new N T) E1 E2...)),

thus making explicit what happens when you construct a new object.

Method calls. Whenever you encounter a “call” node of the form

(call N (attributeref N E1 I) (E2 . . .)),

where E1 denotes an object (not a type or module), convert it to the form

Project #2 5

Table 1: Declaration nodes. The list of the declaration nodes for a program in order by index follows the

AST. In each case, N is the declaration index, unique to each declaration node instance.

Node Meaning

(localdecl N I P T) Local variable named I. P is the declaration index of the enclosing
function or module. T defines what is known about I’s type (see §8,
below).

(paramdecl N I P K T) Parameter named I of type T defined as the Kth parameter (number-
ing from 0) of the function whose declaration index is P .

(constdecl N I P T) Constant value named I of type T defined in a function or module
whose declaration index is P . This is for unassignable values such as
None, and is only used in the standard prelude.

(instancedecl N I P T) Instance variable named I of type T defined in the class with declara-
tion index P .

(funcdecl N I P T) An ordinary function (as opposed to an instance method) named I of
type T , defined in a function or module with declaration index P .

(methoddecl N I P T) An instance method. The arguments are the same as for funcdecl,
except that P refers to the enclosing class.

(classdecl N I M P

(index list m1 · · ·mn))

Class declaration for class named I. M is the declaration index of
the containing module. P is the declaration index of the parent type.
The predefined classes, including ‘object’ (see §9), are the only classes
with P = 0.The mi are the declaration numbers of the class members
that are introduced or overridden in the class (not the ones that are
inherited but not overridden).

(moduledecl N I) Module declaration. The main module of a program has the name
main . However, that name is not visible in the program (the mod-

ule named main is not imported). The import statement intro-
duces other modules. The second and subsequent imports of the same
module do not create new mdoule declarations.

(unknowndecl N I P) An unknown entity. Use this for members of imported modules (e.g.,
re.match or sys.argv), and for names that are selected from objects
of unknown type. If I is imported from a module (using the “from
module import. . . ” syntax), or if it is selected from a module named
in an import, then P is the index of that module. Otherwise, it is 0.
Create one unknowndecl declaration for each distinct combination of
I and P .

Project #2 6

(call method N I (E1 E2 . . .).

On the other hand, if E1 turns out to denote a type or module, replace the “attributeref” node
with I (do this, however, after determining the declaration index to attach to the identifier
I). Thus, when E1 above denotes a type, we replace the “call” with

(call N I (E2 . . .)).

Attributes of classes. As with method calls, whenever you encounter a node of the form

(attributeref N E1 I),

where E1 is known to denote a type or module, replace it with I, after assigning the appro-
priate declaration index to I.

7 Various Restrictions

Our Python dialect is going to place certain restrictions on programs that are not official
Python, but that make it possible to perform a few simple checks.

1. The first parameter of a method (that is, of a def that occurs immediately within a class
definition) has the enclosing class as its static type. The first parameter of a Python
method corresponds to this in a Java program. All methods must have at least one
parameter.

2. An identifier that is defined as a class, function, method, constant, or module may not
be assigned to. Programs can’t explicitly define constants, but they can appear in the
standard prelude, which uses one for the identifier None.

3. An inheritance clause in a class must reference a class completely defined previously in
the program, or the predefined class object (which is defined in the standard prelude:
§9).

4. If an identifier, f , resolves to a function or method definition (as opposed to simply
having the universal supertype any), then a call to it must have the right number of
parameters.

5. Names of classes, methods, and functions may not be redefined immediately within
the same declarative region (function, class, or module). If a variable is assigned to in
some declarative region, its name may not then be defined by def or class statements
immediately within that same region (and vice-versa).

6. The only attributes of a class (things referenceable with ‘.’) defined by a class decla-
ration in the program are instance variables explicitly assigned to in the body of the
class (outside of any methods), or methods defined by def immediately within the class
body, or inherited attributes. Thus, the only attributes of class C:

Project #2 7

class C(A):

a = 3

def f(self): ...

are a, f, and anything inherited from A (other than a or f). That means that the
following are illegal in our subset:

class A(object):

a = 3

def f(self, x):

self.b = 10 # ERROR: no b in class A instances

x.b = 10 # OK: static type of x is any, not A

A().b = 2 # ERROR: no b in class A itself

A.b = 3 # ERROR: No b in class A itself

x = A()

x.b = 2 # OK: static type of x is any

Your compiler must catch these errors.

7. If a class inherits a method, it may not override (redefine) that method with another
having a different number of parameters. It may not redefine an inherited method by
assignment or define an attribute defined by assignment as a method.

8. The static type of the first parameter of a method is the enclosing class. The compiler
must check that any attribute fetched from that parameter is indeed an attribute defined
(or inherited) by that class (see point 6 above).

9. The scope of declarations other than classes includes the entire declarative region that
contains them (before and after the declaration, in other words). In the case of classes,
this declarative region does not include the bodies of methods within those classes. This
is the same as for regular Python except at the outer level.

10. It is illegal to introduce a variable, parameter, function, method, class, or module named
None.

11. Except for identifiers that appear immediately after the dot (.) operator, all identifiers
that are used must be defined.

12. In a call such as

E.f(3),

where E denotes an object (as opposed to a type or module), f must be a method
(defined by def), not an instance variable. In actual Python, you can have situations
like this:

def g(x):

return x+1

Project #2 8

y::A = A()

y.f = g

z = y.f(4)

where f denotes an instance variable. We won’t allow that (you can still write

q = y.f

z = q(4)

Similarly, we don’t allow selection of a method defined by def except in a call, so this
is illegal:

class A(object):

def f(self): ...

y::A = A()

g = y.f

We assumed these rules when we indicated that you should rewrite some call nodes into
“call method” nodes (§6). You must enforce them whenever the selected-from object
has a known user-defined class (that is, a subtype of object). You don’t (indeed often
can’t) enforce these rules when the selected-from object has some other type.

13. While most identifiers have type any, a few will have a non-trivial static type (those
declared by :: and the first parameters of methods). Your program must insure that
any simple assignments to such variables come either from expressions whose static type
is any or from a subtype of the assigned variable’s type. Thus, it should be illegal to
write

x::Int = 2

x = []

Likewise, in those few cases where a formal parameter has a known type other than
‘any’ in a call (which only happens in a few methods defined in the standard prelude
and for the first parameters of user-defined methods), your program should complain if
the actual has the wrong type:

x::String = "X"

y::Int = 3

z = "X"

print chr(x) # ERROR: parameter must have type Int, and x is a String

print chr(y) # OK: y has the right type

print chr(z) # OK: z has the wrong dynamic type, but its static

type is any. Detection must wait until run time.

Project #2 9

8 Types

For this project, the possible types are either classes or function types, represented as follows:

Node Meaning

(type 0) The type ‘any’ (meaning basically the un-
known type).

(type C) Where C > 0: the class whose declaration in-
dex is C.

(functype T0 T1 · · ·Tn) Where the Ti are types: the type of a function
that takes n ≥ 0 arguments of types T1, . . . , Tn

and returns a value of type T0. For this project,
T0 and Tj for j > 1 will always be (type 0)

for functions and methods the user introduces
(but not necessarily for methods or functions
introduced in the standard prelude). For meth-
ods introduced by the user, T1 will always be
(type D), where D is the index of the enclos-
ing class for methods. For other user-defined
functions, T1, if present, will be (type 0).

By default, any defined identifier in Python has static type any (represented (type 0)).
An instance method defined in a class C whose declaration index is k and which has n > 0
parameters has a type C × any × . . . any

︸ ︷︷ ︸

n

→ any, which is represented by

(functype (type 0) (type k) (type 0) ...).

Other defed n-argument functions have type any × . . . × any
︸ ︷︷ ︸

n

→ any, which is represented

(functype (type 0) (type 0) ...).
Using the :: syntax from §3, the programmer can attach a static type to any variable

identifier. Doing so anywhere in the variable’s scope defines the type for all instances. If the
same variable is given a type twice, your compiler must check that it is the same type.

The standard prelude provides several classes that represent built-in types:

Int String List Tuple Dict

These types all inherit from type any (which user-defined classes can’t do). All integer literals
have type Int, string literals have type String, list displays ([...]) have type List, tuples
have type Tuple, and dictionary displays ({. . . }) have type Dict. (We are not going to worry
about floating-point numbers for the rest of the semester). Make sure that you give these
constructs the indicated types in your output trees.

Project #2 10

9 Predefined Names

Python has a large set of predefined classes, functions, and variables, collectively referred to
as “the standard library,” or in other languages as “the standard prelude.” These live in a
module called __builtin__, which you may think of as a declarative region that surrounds
that of the module __main__, so that all of its definitions are visible in any program, unless
hidden by a definition in that program.

We will supply a file containing the AST for a __builtin__ module (but not even close
to full Python), and our framework will contain a small AST-parsing section for reading it in
(which you are free to borrow should you choose not use our framework). You will have to
fill in this parser with statements to create declaration and type objects, however you want
to represent them. For your own testing purposes, you’ll be able to use cut-down versions of
__builtin__. The definitions from __builtin__ should be included at the beginning of the
declaration list in your output. All of the names there, with the exception of __builtin__
itself, should be visible in your program.

10 Running the program

For this project, the command line looks like one of these (square brackets indicate optional
arguments):

./apyc --phase=2 -o OUTFILE [--prelude=PRELUDE] FILE1.py

./apyc --phase=2 [--prelude=PRELUDE] FILE1.py FILE2.py ...

The command lines from project 1 should still do the same thing. That is, phase=1 should
just parse your program and not do semantic analysis. The -o switch indicates the output
file. By default (the second form), the output files are FILEi.dast (“.dast” for “decorated
ast”). The file PRELUDE contains the standard prelude definitions in S-expression notation
(as described in §9). By default, this will be a file standard-prelude-2.dast that we supply
in a standard location.

11 What to turn in

The directory you turn in (under the name proj2-n in your tags directory) should contain
a file Makefile that is set up so that

gmake

(the default target) compiles your program,

gmake check

runs all your tests against your program, and finally,

gmake APYC=PROG check

Project #2 11

runs all your tests against the program PROG (by default, in other words, PROG is your
program, ./apyc). Finally,

gmake clean

should remove all files that are regeneratable or unnecessary. We’ll put a sample Makefile
in the staff proj2 repository directory and in the file ~cs164/hw/proj2 directory; feel free to
modify at will as long as these commands continue to work.

12 Assorted Advice

What, you haven’t started yet? First, review the Python language, and start writing test
cases. You get points for thorough testing and documentation, and it should not be difficult
to get them, so don’t put this off to the last minute!

Again, be sure to ask us for advice rather than spend your own time getting frustrated
over an impasse. By now, you should have your partner’s phone number at least. Keep in
regular contact.

Be sure you understand what we provide. The skeleton classes actually do quite a bit for
you. Make sure you don’t reinvent the wheel.

Do not feel obliged to cram all the checks that are called for here into one method! Keep
separate checks in separate methods. To the extent possible, introduce and test them one at
a time.

Keep your program neat at all times. Keep the formatting of your code correct at all
times, and when you remove code, remove it; don’t just comment it out. It’s much easier to
debug a readable program. Afraid that if you chop out code, you’ll lose it and not be able to
go back? That’s what Subversion is for. Archive each new version when you get it to compile
(or whenever you take a break, for that matter). This will allow you to go back to earlier
versions at will.

Write comments for classes and functions before you write bodies, if only to clarify your
intent in your own mind. Keep comments up to date with changes. Remember that the idea
is that one should be able to figure how to use a function from its comment, without needing
to look at its body.

You still haven’t started?

	Summary
	Input and Output
	New Syntax
	New AST Nodes
	Output Format
	Rewriting
	Various Restrictions
	Types
	Predefined Names
	Running the program
	What to turn in
	Assorted Advice

