Lecture #16: Introduction to Runtime Organization

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 1

Status

e Lexical analysis

- Produces tokens
- Detects & eliminates illegal tokens

e Parsing

- Produces trees
- Detects & eliminates ill-formed parse trees

e Static semantic analysis

- Produces decorated tree with additional information attached
- Detects & eliminates remaining static errors

e Next are the dynamic "back-end" phases: <= we are here

- Code generation (at various semantic levels)
- Optimization

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 2

Run-time environments

Before discussing code generation, we need to understand what we are
trying to generate.

e We'll use the term virtual machine to refer to the compiler's target.
e Can be just a bare hardware architecture (small embedded systems).

e Can be an interpreter, as for Java, or an interpreter that does ad-
ditional compilation at execution, as in modern Java JITs

e For now, we'll stick to hardware + conventions for using it (the API:
application programmer’s interface) + some runtime-support library.

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 3

Code Generation Goals and Considerations

e Correctness: execution of generated code must be consistent with
the programs’ specified dynamic semantics.

e In general, however, these semantics do not completely specify be-
havior, often to allow compiler to accomplish other goals, such as. ..

e Speed: produce code that executes as quickly as possible, or reliably
meets certain timing constraints (as in real-time systems).

e Size: minimize size of generated program or of runtime data struc-
tures.

e Speed and size optimization can be conflicting goals. Why?
e Compilation speed: especially during development or when using JITs.

e Most complications in code generation come from trying to be fast
as well as correct, because this requires attention to special cases.

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 4

Subgoals and Constraints

e Subgoals for improving speed and size:

- Minimize instruction counts.

- Keep data structure static, known at compilation (e.g., known con-
stant offsets to fields). Contrast Java and Python.

- Maximize use of registers ("top of the memory hierarchy").
e Subgoals for improving compilation speed:

- Try to keep analyses as local as possible (single statement, block,
procedure), because their compilation-time cost tends to be non-
linear.

- Simplify assumptions about control flow: procedure calls "always”
return, statements generally execute in sequence. (Where are
these violated?)

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 5

Activations and Lifetimes (Extents)

e An invocation of procedure P is an activation of P.

e The lifetime of an activation of P is all the steps to execute P,
including all the steps in procedures P calls.

e The lifetime (extent) of a variable is the portion of execution dur-
ing which that variable exists (whether or not the code currently
executing can reference it).

e Lifetime is a dynamic (run-time) concept, as opposed to scope, which
Is static.

e Lifetimes of procedure activations and local variables properly nest
(in a single thread), suggesting a stack data structure for maintain-
ing their runtime state.

e Other variables have extents that are not coordinated with proce-
dure calls and returns.

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 6

Memory Layout

Characteristics of procedure activations and variables give rise to the
following typical data layout for a (single-threaded) program:

Last modified: Fri Mar 19 00:17:19 2010

Execution stack
("stack segment”)

S
——

Dynamic data
(“heap”)

Static data
("data segment(s)")

Instructions
("text segment(s)")

-<— Highest memory address

<— Lowest memory address
CS164: Lecture #16 7

Activation Records

e The information needed to manage one procedure activation is called
an activation record (AR) or (stack) frame.

e If procedure F' (the caller) calls G' (the callee, typically G's activa-
tion record contains a mix of data about F' and G:
- Return address to instructions in F'.
- Dynamic link to the AR for F.
- Space to save registers needed by F.
- Space for G's local variables.
- Information needed to find non-local variables needed by G.

- Temporary space for intermediate results, arguments to and re-
turn values from functions that G calls.

- Assorted machine status needed to restore F's context (signal
masks, floating-point unit parameters).

e Depending on architecture and compiler, registers typically hold part
of AR (at times), especially parameters, return values, locals, and
pointers to the current stack top and frame.

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 8

Calling Conventions

e Many variations are possible:

- Can rearrange order of frame elements.

- Can divide caller/callee responsibilities differently.

- Don't need to use an array-like implementation of the stack: can
use a linked list of ARs.

e Anorganization is better if it improves execution speed or simplifies
code generation

e The compiler must determine, at compile-time, the layout of activa-
tion records and generate code that correctly accesses locations in
the activation record.

e Furthermore, it is common to compile procedures separately and
without access of each other's details, which motivates the the im-
position of calling conventions.

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 9

Static Storage

e Here, "static storage" refers to variables whose extent is an entire
execution and whose size is typically fixed before execution.

e Not generally stored in an activation record, but assigned a fixed
address once.

e In C/C++ variables with file scope (declared static in C) and with
external linkage ("global”) are in static storage.

e Java's "static” variables are an odd case: they don't really fit this
picture (why?)

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 10

Heap Storage

e Variables whose extent is greater than that of the AR in which they
are created can't be kept there:

Bar foo() { return new Bar(); }
e Call such storage dynamically allocated.

e Typically allocated out of an area called the heap (confusingly, not
the same as the heap used for priority geues!)

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 11

Achieving Runtime Effects—Functions

e Language design and runtime design interact. Semantics of func-
tions make good example.

e Levels of function features:
1. Plain: no recursion, no nesting, fixed-sized data with size known
by compiler.
2. Add recursion.
3. Add variable-sized unboxed data.
4. Allow nesting of functions, up-level addressing.
5. Allow function values w/ properly nested accesses only.
6. Allow general closures.
7. Allow continuations.

e Tension between these effects and structure of machines:

- Machine languages typically only make it easy to access things at
addresses like R + C, where R is an address in a register and C
is a relatively small integer constant.

- Therefore, fixed offsets good, data-dependent offsets bad.

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 12

1: No recursion, no nesting, fixed-sized data

e Total amount of data is bounded, and there is only one instantiation
of a function at a time.

e So all variables, return addresses, and return values can go in fixed
locations.

e No stack needed at all.
e Characterized FORTRAN programs in the early days.

e In fact, can dispense with call instructions altogether: expand func-
tion calls in-line. E.q.,

def f (x):
x *= 42 x.1=3
y =9 + x; x_1 *= 42
() —> becomes = y1=9+x1
g (x_1, y_1)
f (3)

e However, program may get bigger than you want. Typically, one in-
lines only small, frequently executed functions.

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 13

1:

Calling conventions

e If we don't use function inlining, will need to save return address,

parameters.

e There are many options. Here's one example, from the IBM 360, of
calling function F from G and passing values 3 and 4:

GArgs DS 2F
ENTRY G

G e
LA R1,GArgs
LA RO,3
ST RO,GArgs
LA RO,4
ST RO,GArgs+4
BAL R14,F

and F might contain

FRet DS F
ENTRY F

F ST R14,FRet
L R2,0(R1)
L R14,FRet
BR R14

Last modified: Fri Mar 19 00:17:19 2010

Reserve 2 4-byte words of static storage */

Load Address of arguments into register 1
Store 3 and 4 in GArgs+0 and GArgs+4

Call ("Branch and Link") to F, R14 gets return point

Save return address
Load first argument.

Get return address
Branch to it

CS164: Lecture #16 14

2: Add recursion

e Now, total amount of data is un-
bounded, and several instantiations of
a function can be active simultaneously.

e Calls for some kind of expandable data
structure: a stack.

e However, variable sizes still fixed, so
size of each activation record (stack
frame) is fixed.

e All local-variable addresses and the
value of dynamic link are known offsets
from stack pointer, which is typically in
a register.

e (The diagram shows the conventions we
use in the ia32, where we'll define a
stack frame as starting after the re-
turn address.)

Last modified: Fri Mar 19 00:17:19 2010

f's
locals
ra
arguments
to f
gs
locals
ra
arguments
tog
f's
locals

ra

Top of stack

fixed distance
Base of

1st frame

CS164: Lecture #16 15

2: Calling Sequence when Frame Size is Fixed

e So dynamic links not really needed.
e Suppose f calls g calls f, as at right.

e When called, the initial code of ¢ (its
prologue) decrements the stack pointer
by the size of ¢'s activation record.

e ¢'s exit code (its epilogue):

- increments the stack pointer by this
same size,

- pops of f the return address, and

- branches to address just popped.

Last modified: Fri Mar 19 00:17:19 2010

f's
locals

ra
arguments

to f
gs
locals

ra
arguments

tog
f's

locals

ra

Top of stack

fixed distance
Base of

1st frame

CS164: Lecture #16 16

2: Calling sequence from ia32

C code:

int
f (int x, int y)
{
int s;
s = 1;
while (y > 0) {
S *= X;
y = 1
+

return s;
int
g(int q)

return f(q, 5);

Last modified: Fri Mar 19 00:17:19 2010

Assembly excerpt (6NU operand order):

/ PRO = Prologue, EPI = Epilogue

f: / Return address (RA) at SP, x at SP+4, y at SP+8
subl $4, Yesp / PRO: Decrement SP to make space for s
movl $1, (%esp) / s =1

.L2:
cmpl $0, 12(%esp) / compare O with y (now at SP+12)
jle .L3
movl (%esp), %eax / tmp = s
imull 8(%esp), heax / tmp *= x
movl Yeax, (%esp) / s = tmp
leal 12(%esp), %eax / tmp = &y
decl (%eax) / *tmp -= 1
jmp L2

.L3:
movl (%esp), heax / return s in EAX

addl $4, %esp
ret

movl $5, 4(%esp)
movl 12(%esp), heax
movl %eax, (%esp)
call £

next:

~

~N N NN N

EPI: Restore stack pointer so RA on top,
EPI: then pop RA and return.

Put q and 5 on stack (q on top).

tmp = g
top of stack = q
branch to f and push address of next.

CS164: Lecture #16 17

3: Add Variable-Sized Unboxed Data

e "Unboxed" means "not on heap.”

e Boxing allows all quantities on stack to
have fixed size.

e So Java implementations have fixed-
size stack frames.

e But does cost heap allocation, so
some languages also provide for placing
variable-sized data directly on stack
("heap allocation on the stack")

e allocainC,e.q.
e Now we do need dynamic link (DL).

e But can still insure fixed offsets of
data from frame base (frame pointer)
using pointers.

e To right, f calls g, which has variable-
sized unboaxed array (see right).

Last modified: Fri Mar 19 00:17:19 2010

¢ Top of stack

-

unboxed
storage

other
locals

local
pointer

— 4 Frame pointer
ra
arguments
tog
f's
locals

—oC_ |

ra

CS164: Lecture #16 18

Other Uses of the Dynamic Link

e Often use dynamic link even when size of AR is fixed.
e Allows use of same strategy for all ARs, simplifies code generation.

e Makes it easier to write general functions that unwind the stack
(i.e., pop ARs off, thus returning).

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 19

3: Calling sequence for the ia32

Assembly excerpt (6NU operand order):

f: / Return address (RA) at SP, x at SP+4, y at SP+8
pushl %ebp / PRO: Save old dynamic link.
C code: movl Yesp, %ebp / PRO: Set ebp to current frame base.
int subl $4, Yesp / PRO: Decrement SP to make space for s
. . movl $1, -4(%ebp) / s =1
f (int x, int y) Lo,
{ int s cmpl $0, 12(%ebp) / compare O with y (now at BP+12)
jle .L3
s =1; \ ,
while (y > 0) { @ovl —4fAebp),erax / tmp = s
< %= x- imull 8(%ebp), %eax / tmp *= x
y = 1i movl Yeax, -4(%ebp) / s = tmp
} ’ leal 12(%ebp), %eax / tmp = &y
decl (Y%eax) / *tmp -= 1
return s;
} jmp .L2
.L3:
int movl -4(%ebp), %heax / return s
g(int Q) leave / EPI: Restore Y%esp to %ebp+4 and %ebp to 0(%%ebp
{ ret / EPI: then pop RA and return.
_ g: ...
3 return £(q, 5); movl $5, 4(%esp) / Put q and 5 on stack (q on top).
movl 8(%ebp), %eax / tmp = q
movl %eax, (%esp) / top of stack = q
call £ / branch to f and push address of next.
next:

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 20

4: Allow Nesting of Functions, Up-Level Addressing

e When functions can be nested, there
are three classes of variable:

a. Local to function.
b. Local to enclosing function.
c. Global

e Accessing (a) or (c) is easy. It's (b)
that's interesting.

e Consider (in Python):

def £ (O):
y = 42 # Local to f
def g (n, q):
if n == 0: return gty

else: return g (n-1, g*2)

e Here, y can be any distance away from
top of stack.

Last modified: Fri Mar 19 00:17:19 2010

{—‘— Top of stack

How far???

CS164: Lecture #16 21

Static Links

e To overcome this problem, go
back to environment diagrams!

e Each diagram had a pointer to
lexically enclosing environment

e In Python example from last
slide, each ‘g’ frame contains a
pointer to the 'f' frame where
that 'g' was defined: the static
link (SL)

e To access local variable, use
frame-base pointer (or maybe
stack pointer).

e To access global, use absolute
address.

e To access local of nesting func-
tion, follow static link once per
difference in levels of nesting.

Last modified: Fri Mar 19 00:17:19 2010

gs Si I’L(]ﬂ'\e

4 Top of stack

)

ra
gs frame
SL

—»T

_ra
gs frame

~ SL
HT
ra

f's frame
SL

—»T‘

ra

CS164: Lecture #16 22

Calling sequence for the ia32: fO

Assembly excerpt for fO:

C code: fO: / Does not need to be passed a static link

int pushl Jebp / PRO
l oo b 00 b PRO
fO (int nO) mov hesp o/e P /
(subl $40, Yesp / PRO
int s = -00-: mov1l 8 (%ebp) , %heax / Fetch nO
, ’ mov1l heax, —-16(%ebp) / Move nO to new local variable
int gl () { return s; } mov1l -16(%ebp) , %eax / Negate nO
int f1 (int n1) { negl yeax° P)s 4 g -
int £2 ’
lnreturi)né + ni movl heax, —12(Jebp) / ... and store in s
b s+ el O leal -16 (%ebp) , %eax / Compute static link to f0’s frame
} & ’ mov1l $10, (hesp) / Pass argument 10...
return £2 (s) + f1 (n0) movl heax, hecx / ... and static link ...
+ o1 O call f1 / ... to f1
} & ’ leave / EPI
t EPI
£1 (10); oret -/
} / Static link into f0’s frame points to:
/ int n0’ / Copy of nO
/ int S

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 23

Calling sequence for the ia32: f1

f1: / Static link to fO’s frame is in Y%ecx

mov1l heax, -16(%ebp)
mov1l %hebx, -12(%ebp)

int g1 O { return s; } ...to new local

int f1 (int ni) { Save static link to fO in local

movl 4 (%ebx), %hedx Fetch s from fO’s frame

pushl Yebp / PRO
mov1l hesp, %hebp / PRO
C COde: pushl Yesi / PRO: Save %esi
int pushl %ebx / PRO: Save Y%ebx
£0 (int no) subl $32, Yesp / PRO
{ movl hecx, hebx / Save link to f0’s frame
int s = -n0- movl 8 (%hebp), %heax / Move nl
’ /
/
. /
lnzeiiré)né R movl hedx, (esp) / And pass to f2
v s+ gl O leal -16 (%hebp) , %ecx / Pass static link to my frame to f2
} call f2
return £2 (s) + £1 (n0) movl heax, fhesi / Save £2(s)
+ gl O mov1l (hebx) , %heax / Fetch n0 from f0’s frame...
} mov1l heax, (%hesp) / ... and pass to f1
£1 (10); movl hebx, hecx / Also pass on my static link
} call f1
addl heax, hesi / Compute f2(s) + £1(n0)
/ Static link to £1 points to: mov1l hebx, ‘hecx / Pass same static link to gl
int nl’ Copy of nl call g1 .
leal (%esi,%eax), heax Compute f2(s)+£f1(n0)+gl1()

int SL Static link

to £0’s frame */ addl $32, Jesp

popl hebx
popl hesi
popl Jiebp
ret

EPI
EPI: restore J%ebx
EPI: restored Jesi
EPI
EPI

N NN NN NN

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 24

Calling sequence for the ia32: gl

C code:
int
fO (int nO)
{ .
it s - -n0. Assembly excerpt for gl:
int g1 O { return s; } gi: / Static link (to f0’s frame) in Jecx
int f1 (int nl1) { pushl Yebp / PRO
int f2 O { movl hesp, hebp / PRO
return n0O + nl movl hecx, theax / Fetch s from ...
+s +gl O; movl 4 (fheax), heax / ... f0’s frame
} popl %ebp / EPI
return £f2 (s) + f1 (n0) ret / EPI
+ g1 O;
+
f1 (10);
+

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 25

C code:

Calling sequence for the ia32: f2

Assembly excerpt for f2:

int
fO0 (int nO)

{

int s = -n0;
int g1 O { return s; }
int f1 (int n1) {

int £2 O {
return nO + nil
+ s+ gl O);
}
return f2 (s) + f1 (n0)
+ g1 O;

}
f1 (10);

Last modified: Fri Mar 19 00:17:19 2010

pushl
movl
pushl
movl
movl
movl
movl
addl
movl
movl
leal
movl
movl
call
leal
popl
popl
ret

Jebp

hesp, %hebp

%hebx

hecx, lheax

4 (fheax), hedx
(%edx), ‘hecx
(heax), %edx
hedx, %hecx

4 (Yheax), Jhedx

4 (%hedx), %hedx
(%ecx,hedx), %hebx
4 (fheax), heax
%heax, hecx

gl

(%ebx,heax), %heax
%hebx

%ebp

N N N N N N N N N N NN YN

~N N N N

f2: / Static link (into f1’s frame) in %ecx

PRO
PRO
PRO: Save %ebx
Fetch static link to O
. from f1’s frame
. to get nO0 from f0’s frame
Fetch nl from f1’s frame
Add n0O + ni
Fetch static link to fO again
Fetch s from f0’s frame
And add to n0O + nil
Fetch static link to fO...
. and pass to gl

Add g1() to n0 + nl + s
EPI: Restore J%ebx

EPI

EPI

CS164: Lecture #16 26

The Global Display

e Historically, first solution to nested function
problem used an array indexed by call level,
rather than static links.

def f0 (O):
q=42; g1 O
def f1 O):
def £2 O: ... g2 O ...
def g2 O: ... g2 O ... g1 O
def g1 O: ... f1 O ...
. . . g1 1
e Each time we enter a function at lexical level & 01 0
(i.e., nested inside k functions), save pointer to
its frame base in DISPLAY[k]; restore on exit.
e Access variable at lexical level k& through gl's
DISPLAY[k]. frame
e Relies heavily on scope rules and proper O's
function-call nesting f,fame DISPLAY

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 27

The Global Display

e Historically, first solution to nested function
problem used an array indexed by call level,
rather than static links.

def f0 (O):
q=42; g1 O
def f1 O):
def £2 O: ... g2 O ...
def g2 O: ... g2 O ... g1 O
def g1 O: ... f1 O ... i
e Each time we enter a function at lexical level & 01 0
(i.e., nested inside k functions), save pointer to f1's
its frame base in DISPLAY[L]: restore onexit. | fpame
e Access variable at lexical level k& through gl's
e Relies heavily on scope rules and proper fO's
function-call nesting frame DISPLAY

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 27

The Global Display

e Historically, first solution to nested function
problem used an array indexed by call level,
rather than static links.

def fO ():
q=42; g1 O
def f1 ():
def £2 O: ... g2 O ...
def g2 O: ... g2 O ... g1 O ...
def g1 O: ... f1 O ... s .
e Each time we enter a function at lexical level k frame _— fOl O
(i.e., nested inside k functions), save pointer to fl's
its frame base in DISPLAY[k]; restore on exit. frame
e Access variable at lexical level k& through gl's
DISPLAY[L]. frame
e Relies heavily on scope rules and proper fO's
function-call nesting frame DISPLAY

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 27

The Global Display

e Historically, first solution to nested function
problem used an array indexed by call level,
rather than static links.

def f0 O:
q=42; g1 O
def f1 ():
def £2 O: ... g2 O ...
def g2 O: ... g2 O ... g1 O ...
def g1 O: ... f1 O ...

e Each time we enter a function at lexical level &
(i.e., nested inside k functions), save pointer to
its frame base in DISPLAY[k]; restore on exit.

e Access variable at lexical level k& through
DISPLAY[k].

e Relies heavily on scope rules and proper
function-call nesting

Last modified: Fri Mar 19 00:17:19 2010

f2's
frame

fl's
frame

fl's
frame

gl's
frame

fO's
frame

CS164: Lecture #16 27

|

f2
f1
fO

Q=N

DISPLAY

The Global Display

e Historically, first solution to nested function
problem used an array indexed by call level,
rather than static links.

def f0 O:
q=42; g1 O
def f1 ():
def £2 O: ... g2 O ...
def g2 O: ... g2 O ... g1 O ...
def g1 O: ... f1 O ...

e Each time we enter a function at lexical level &
(i.e., nested inside k functions), save pointer to
its frame base in DISPLAY[k]; restore on exit.

e Access variable at lexical level k& through
DISPLAY[k].

e Relies heavily on scope rules and proper
function-call nesting

Last modified: Fri Mar 19 00:17:19 2010

g2's
frame
f2's
frame
fl's
frame
fl's
frame

gl's
frame

fO's
frame

CS164: Lecture #16 27

3=
Q=N

DISPLAY

The Global Display

e Historically, first solution to nested function
problem used an array indexed by call level,

rather than static links. g2's
def fO0 (): fr'ar'ne
q=42; g1 O g2's
def £f1 O : frame
def f2 O: ... g2 O ... f2's
def g2 O: ... g2 O ... gl O ... frame
def g1t O: ... f1 O ... , g2 | 2
e Each time we enter a function at lexical level & frame _— fOl O
(i.e., nested inside k functions), save pointer to fl's
its frame base in DISPLAY[L]: restore onexit. | fpame
e Access variable at lexical level k& through gl's
DISPLAY[L]. frame
e Relies heavily on scope rules and proper fO's
function-call nesting frame DISPLAY

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 27

The Global Display

e Historically, first solution to nested function
problem used an array indexed by call level,
rather than static links.

def f0 O:
q=42; g1 O
def f1 ():
def £2 O: ... g2 O ...
def g2 O: ... g2 O ... g1 O ...
def g1 O: ... f1 O ...

e Each time we enter a function at lexical level &
(i.e., nested inside k functions), save pointer to
its frame base in DISPLAY[k]; restore on exit.

e Access variable at lexical level k& through
DISPLAY[k].

e Relies heavily on scope rules and proper
function-call nesting

Last modified: Fri Mar 19 00:17:19 2010

gl's
frame

frame

fl's
frame

gl's
frame

fO's
frame

CS164: Lecture #16 27

Q=N

DISPLAY

Using the global display (sketch)

C code:

int

fO (int nO)

{
int s = -n0;
int g1 () { return s; %}
int f1 (int n1) {

int £2 O {
return nO + nl
+s +gl O;
}
return £f2 (s) + f1 (n0)
+ g1 O;

+
f1 (10);

Last modified: Fri Mar 19 00:17:19 2010

f0:
movl
movl
movl

movl
movl

f1:
movl
movl
movl

. likewise for epilogue.

_DISPLAY+0, %eax
heax,-12(%ebp)
%epb, _DISPLAY+0

-12(%ebp) , hecx
hecx, _DISPLAY+O0

_DISPLAY+4,%eax
heax,-12(%ebp)
%ebp, _DISPLAY+4

/
/
/

PRO:
PRO:
PRO:

EPI:

EPI

PRO:
PRO:
PRO:

Save old _DISPLAY[O]...
.. .somewhere
Put my %ebp in _DISPLAY[0]

Restore old _DISPLAY[0]

Save old _DISPLAY[1]...
. somewhere
Put my %ebp in _DISPLAY[1]

f2 and gl: no extra code, since they have no nested functions.

CS164: Lecture #16 28

5: Allow Function Values, Properly Nested Access

e In C, C++, no function nesting.
e So all non-local variables are global, and have fixed addresses.

e Thus, to represent a variable whose value is a function, need only to
store the address of the function's code.

e But when nested functions possible, function value must contain
more.

e When function is finally called, must be told what its static link is.

e Assume first that access is properly nested: variables accessed only
during lifetime of their frame.

e So can represent function with address of code + the address of
the frame that contains that function's definition.

e It's environment diagrams again!!

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 29

Function Value Representation

def fO (x):
def f1 (y):
def f2 (z2):
return x + y + z
print hl (£2)
def hl (g): g (3)
f1 (42)

e Call £0 from the main program;
look at the stack when £2 finally
is called (see right).

e When £2's value (as a function)
is computed, current frame is
that of £1. That is stored in the
value passed to hi.

e Easy with static links; global dis-
play technique does not fare as
well [why?]

Last modified: Fri Mar 19 00:17:19 2010

T?'?SFW

¢ Top of stack

)

ra
hl's frame
SL

Value of g (i.e., f2)

ra

T1's Trame

+ code Lr f2

ra

fO's frame

SL

-

ra

CS164: Lecture #16 30

6: General Closures

e What happens when the frame
that a function value points to
goes away?

e If we used the previous repre-
sentation (#5), we'd get a dan-
gling pointer in this case:

def incr (n):
delta = n
def £ (x):
return delta + x
return f

p2 = incr(2)
print p2(3)

Last modified: Fri Mar 19 00:17:19 2010

Value of incr(2)

code for f

ra

Du

Fion of incr(2)

CS164: Lecture #16 31

6: General Closures
e What happens when the frame Value of incr(2)
that a function value points to
goes away?

e If we used the previous repre-
sentation (#5), we'd get a dan-

gling pointer in this case:
code for f

def incr (n):
delta = n
def f (x):

return delta + x '

return f

2 =1 2 s .
p<. ln;g)) After-return from incr(2)
print p delta is gone

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 31

Representing Closures

e Could just forbid this case (as
some languages do):

- Algol 68 would not allow
pointer to f (last slide) to be
returned from incr.

- Or, one could allow it, and do
something random when f (i.e.
via delta) is called.

e Scheme and Python allow it and
do the right thing.

e But must in general put local
variables (and a static link) in a
record on the heap, instead of
on the stack.

Last modified: Fri Mar 19 00:17:19 2010

Temp
storage
etc.

deltaq,
&n

ra

SL

Value

code for f

CS164: Lecture #16 32

incr(2)

Representing Closures

e Could just forbid this case (as
some languages do):

- Algol 68 would not allow
pointer to f (last slide) to be
returned from incr.

- Or, one could allow it, and do
something random when f (i.e.
via delta) is called.

e Scheme and Python allow it and
do the right thing.

e But must in general put local
variables (and a static link) in a
record on the heap, instead of
on the stack.

e Now frame can disappear harm-
lessly.

Last modified: Fri Mar 19 00:17:19 2010

deltaq,
&n

SL

Value

code for f

CS164: Lecture #16 32

incr(2)

7: Continuations

e Suppose function return were not the end?

def f (cont): return cont

x =1
def g (n): # Prints:
global X, C # a10b10cl11c1l1?2
if n == 0O: # b20c21c22
print "a", x, n, # b30c31c3?2
¢ = call_with_continuation (f)
print "b", x, n,

else: g(n-1); print "c", x, n,
g(2); x += 1; print; c()

e The continuation, c, passed to f is "the function that does whatever
is supposed to happen after I return from f."

e Can be used to implement exceptions, threads, co-routines.

e Implementation? Nothing much for it but to put all activation frames
on the heap.

e Distributed cost.

e However, we can do better on special cases like exceptions.

Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 33

Summary

Problem

Solution

. Plain: no recursion, no nest-
ing, fixed-sized data with size
known by compiler, first-class
function values.

Use inline expansion or use
static variables to hold return
addresses, locals, etc.

. #1 + recursion

Need stack.

. #2 + Add variable-sized un-
boxed data

Need to keep both stack
pointer and frame pointer.

. #3 - first-class function values
+ Nested functions, up-level ad-
dressing

Add static link or global display.

. #4 + Function values w/ prop-
erly nested accesses: functions
passed as parameters only.

Static link, function values con-
tain their link. (Global display
doesn't work so well)

. #5 + General closures: first-
class functions returned from
functions or stored in variables

Store local variables and static
link on heap.

. #6 + Continuations

Last modified: Fri Mar 19 00:17:19 2010

Put everything on the heap.

CS164: Lecture #16 34

	Lecture #16: Introduction to Runtime Organization
	Status
	Run-time environments
	Code Generation Goals and Considerations
	Subgoals and Constraints
	Activations and Lifetimes (Extents)
	Memory Layout
	Activation Records
	Calling Conventions
	Static Storage
	Heap Storage
	Achieving Runtime Effects---Functions
	1: No recursion, no nesting, fixed-sized data
	1: Calling conventions
	2: Add recursion
	2: Calling Sequence when Frame Size is Fixed
	2: Calling sequence from ia32
	3: Add Variable-Sized Unboxed Data
	Other Uses of the Dynamic Link
	3: Calling sequence for the ia32
	4: Allow Nesting of Functions, Up-Level Addressing
	Static Links
	Calling sequence for the ia32: f0
	Calling sequence for the ia32: f1
	Calling sequence for the ia32: g1
	Calling sequence for the ia32: f2
	The Global Display
	Using the global display (sketch)
	5: Allow Function Values, Properly Nested Access
	Function Value Representation
	6: General Closures
	Representing Closures
	7: Continuations
	Summary

