Lecture 26: IL for Arrays, Local Optimization

[Adapted from notes by R. Bodik and G. Necula]

One-dimensional Arrays

- How do we process retrieval from and assignment to $\mathrm{x}[\mathrm{i}]$, for an array x ?
- We assume that all items of the array have fixed size-S bytesand are arranged sequentially in memory (the usual representation).
- Easy to see that the address of $\mathrm{x}[\mathrm{i}]$ must be
$\& x+S \cdot i$,
where $\& x$ is intended to denote the address of the beginning of x.
- Generically, we call such formulae for getting an element of a data structure access algorithms.
- The IL might look like this:

$$
\begin{aligned}
& \operatorname{cgen}\left(\& \mathrm{~A}[\mathrm{E}], t_{0}\right): \\
& \quad \operatorname{cgen}\left(\& \mathrm{~A}, t_{1}\right) \\
& \quad \operatorname{cgen}\left(\mathrm{E}, t_{2}\right) \\
& \quad \Rightarrow t_{3}:=t_{2} * \mathrm{~S} \\
& \quad \Rightarrow t_{0}:=t_{1}+t_{3}
\end{aligned}
$$

Generating Intermediate Language (IL) Code

- For this lecture, let's assume a function-called cgen-that converts ASTs (denoted by program fragments) into IL code: cgen (E, R) :
"""Generate IL code that evaluates E and puts
the result (if any) into virtual register R."""
- We'll use the C notations \&V to denote the address of entity V, and $* T$ to denote the contents of memory whose address is T .
- We'll use to, t1, etc., to denote virtual registers. If undeclared, assume they are freshly generated virtual registers.
- Finally, we'll use the notation " $\Rightarrow C$ " where C is IL to mean "output code $C^{\prime \prime}$.

Multi-dimensional Arrays

- A 2D array is a 1 D array of 1 D arrays.
- Java uses arrays of pointers to arrays for 1 D arrays.
- But if row size constant, for faster access and compactness, may prefer to represent an $M \times N$ array as a 1 D array of 1 D rows (not pointers to rows): row-major order...
- Or, as in FORTRAN, a 1D array of 1D columns: column-major order.
- So apply the formula for 1D arrays repeatedly-first to compute the beginning of a row and then to compute the column within that row:

$$
\& A[i][j]=\& A+i \cdot S \cdot N+j \cdot S
$$

for an M-row by N-column array, where S, again, is the size of an individual element.

IL for $M \times N$ 2D array

cgen(\&e1[e2,e3], t):

cgen (e1, t1); cgen(e2,t2); cgen(e3,t3)
cgen($N, t 4$) \# (N need not be constant)
$\Rightarrow \mathrm{t} 5:=\mathrm{t} 4 * \mathrm{t} 2$
$\Rightarrow \mathrm{t} 6:=\mathrm{t} 5+\mathrm{t} 3$
$\Rightarrow \mathrm{t} 7:=\mathrm{t} 6 * \mathrm{~S}$
$\Rightarrow \mathrm{t}:=\mathrm{t} 7+\mathrm{t} 1$

Array Descriptors

- Calculation of element address \&e1 [e2, e3] has the form

$$
V O+S 1 \times e 2+S 2 \times e 3
$$

, where

- VO (\&e1 $[0,0])$ is the virtual origin.
- S1 and S2 are strides.
- All three of these are constant throughout the lifetime of the array (assuming arrays of constant size).
- Therefore, we can package these up into an array descriptor, which can be passed in lieu of the array itself, as a kind of "fat pointer" to the array:

$$
\begin{array}{|l|c|c|}
\hline \& \in 1[0][0] & S \times N & S \\
\hline
\end{array}
$$

Array Descriptors (II)

- Assuming that e1 now evaluates to the address of a 2D array descriptor, the IL code becomes:

```
cgen(&e1[e2,e3], t):
    cgen(e1, t1); cgen(e2,t2); cgen(e3,t3)
    t4 := *t1; # The VO
    # t5 := *(t1+4) # Stride #1
    # t6 := *(t1+8) # Stride #2
    # t7 := t5 * t2
    t8 := t6 * t3
    # t9 := t4 + t7
    t10:= t9 + t8
```


Array Descriptors (III)

- By judicious choice of descriptor values, can make the same formula work for different kinds of array.
- For example, if lower bounds of indices are 1 rather than 0 , must compute address

$$
\& e[1,1]+S 1 \times(e 2-1)+S 2 \times(e 3-1)
$$

- But some algebra puts this into the form

$$
V^{\prime}+\mathrm{S} 1 \times \mathrm{e} 2+\mathrm{S} 2 \times \mathrm{e} 3
$$

where

$$
\mathrm{VO}{ }^{\prime}=\& e[1,1]-\mathrm{S} 1-\mathrm{S} 2=\& e[0,0] \text { (if it existed). }
$$

- So with the descriptor
\square
we can use the same code as on the last slide.

Observation

- These examples show profligate use of registers.
- Doesn't matter, because this is Intermediate Code. Rely on later optimization stages to do the right thing...
- ...As we'll start discussing next.

Introduction to Code Optimization

Code optimization is the usual term, but is grossly misnamed, since code produced by "optimizers" is not optimal in any reasonable sense. Program improvement would be more appropriate.

Topics:

- Basic blocks
- Control-flow graphs (CFGs)
- Algebraic simplification
- Constant folding
- Static single-assignment form (SSA)
- Common-subexpression elimination (CSE)
- Copy propagation
- Dead-code elimination
- Peephole optimizations

Last modified: Thu Apr 22 17:58:51 2010

Basic Blocks

- A basic block is a maximal sequence of instructions with:
- no labels (except at the first instruction), and
- no jumps (except in the last instruction)
- Idea:
- Cannot jump into a basic block, except at the beginning.
- Cannot jump within a basic block, except at end.
- Therefore, each instruction in a basic block is executed after all the preceding instructions have been executed

Basic-Block Example

- Consider the basic block

1. L1:
2. $\mathrm{t}:=2 * \mathrm{x}$
3. $\mathrm{w}:=\mathrm{t}+\mathrm{x}$
4. if $\mathrm{w}>0$ goto L2

- No way for (3) to be executed without (2) having been executed right before
- We can change (3) to w := $3 * x$
- Can we eliminate (2) as well?

Control-Flow Graphs (CFGs)

- A control-flow graph is a directed graph with basic blocks as nodes
- There is an edge from block A to block B if the execution can flow from the last instruction in A to the first instruction in B :
- The last instruction in A can be a jump to the label of B.
- Or execution can fall through from the end of block A to the beginning of block B.

Optimization Overview

- Optimization seeks to improve a program's utilization of some resource:
- Execution time (most often)
- Code size
- Network messages sent
- Battery power used, etc.
- Optimization should not depart from the programming language's semantics
- So if the semantics of a particular program is deterministic, optimization must not change the answer.
- On the other hand, some program behavior is undefined (e.g., what happens when an unchecked rule in C is violated), and in those cases, optimization may cause differences in results.

Control-Flow Graphs: Example

Last modified: Thu Apr 22 17:58:51 2010

A Classification of Optimizations

- For languages like C and Java there are three granularities of optimizations

1. Local optimizations: Apply to a basic block in isolation.
2. Global optimizations: Apply to a control-flow graph (single function body) in isolation.
3. Inter-procedural optimizations: Apply across function boundaries.

- Most compilers do (1), many do (2) and very few do (3)
- Problem is expense: (2) and (3) typically require superlinear time. Can usually handle that when limited to a single function, but gets problematic for larger program.
- In practice, generally don't implement fanciest known optimizations: some are hard to implement (esp., hard to get right), some require a lot of compilation time.
- The goal: maximum improvement with minimum cost.

Local Optimizations: Algebraic Simplification

- Some statements can be deleted
$\mathrm{x}:=\mathrm{x}+0$
$\mathrm{x}:=\mathrm{x} * 1$
- Some statements can be simplified or converted to use faster operations:

Original	Simplified
$\mathrm{x}:=\mathrm{x} * 0$	$\mathrm{x}:=0$
$\mathrm{y}:=\mathrm{y} * * 2$	y
y	$:=\mathrm{y} * \mathrm{y}$
$\mathrm{x}:=\mathrm{x} * 8$	$\mathrm{x}:=\mathrm{x} \ll 3$
$\mathrm{x}:=\mathrm{x} * 15$	t
x	$:=\mathrm{x} \ll 4 ; \mathrm{x}:=\mathrm{t}-\mathrm{x}$

(on some machines << is faster than *; but not on all!)

Local Optimization: Constant Folding

- Operations on constants can be computed at compile time.
- Example: $\mathrm{x}:=2+2$ becomes $\mathrm{x}:=4$.
- Example: if 2 < 0 jump L becomes a no-op.
- When might constant folding be dangerous?

Global Optimization: Unreachable code elimination

- Basic blocks that are not reachable from the entry point of the CFG may be eliminated.
- Why would such basic blocks occur?
- Removing unreachable code makes the program smaller (sometimes also faster, due to instruction-cache effects, but this is probably not a terribly large effect.)

Single Assignment Form

- Some optimizations are simplified if each assignment is to a temporary that has not appeared already in the basic block.
- Intermediate code can be rewritten to be in (static) single assignment (SSA) form:

$\mathrm{x}:=\mathrm{a}+\mathrm{y}$	$\mathrm{x}:=\mathrm{a}+\mathrm{y}$
$\mathrm{a}:=\mathrm{x}$	$\mathrm{a} 1:=\mathrm{x}$
$\mathrm{x}:=\mathrm{a} * \mathrm{x}$	$\mathrm{x} 1:=\mathrm{a} 1 * \mathrm{x}$
$\mathrm{b}:=\mathrm{x}+\mathrm{a}$	$\mathrm{b}:=\mathrm{x} 1+\mathrm{a} 1$

where x 1 and a1 are fresh temporaries.

Common SubExpression (CSE) Elimination in Basic Blocks

- A common subexpression is an expression that appears multiple times on a right-hand side in contexts where the operands have the same values in each case (so that the expression will yield the same value).
- Assume that the basic block on the left is in single assignment form.
x := y + z
x := y + z
w : $=\mathrm{y}+\mathrm{z}$
w := x
- That is, if two assignments have the same right-hand side, we can replace the second instance of that right-hand side with the variable that was assigned the first instance.
- How did we use the assumption of single assignment here?

Copy Propagation

- If $\mathrm{w}:=\mathrm{x}$ appears in a block, can replace all subsequent uses of w with uses of x .
- Example:

$\mathrm{b}:=\mathrm{z}+\mathrm{y}$	$\mathrm{b}:=z+\mathrm{y}$
$\mathrm{a}:=\mathrm{b}$	$\mathrm{a}:=\mathrm{b}$
$\mathrm{x}:=2 * \mathrm{a}$	$\mathrm{x}:=2 * \mathrm{~b}$

- This does not make the program smaller or faster but might enable other optimizations. For example, if a is not used after this statement, we need not assign to it.
- Or consider:

$$
\begin{array}{ll}
\mathrm{b}:=13 & \mathrm{~b}:=13 \\
\mathrm{x}:=2 * \mathrm{a} & \mathrm{x}:=2 * 13
\end{array}
$$

which immediately enables constant folding.

- Again, the optimization, as described, won't work unless the block is in single assignment form.

Last modified: Thu Apr 22 17:58:51 2010
CS164: Lecture \#24 22

Dead Code Elimination

- If that statement w := rhs appears in a basic block and w does not appear anywhere else in the program, we say that the statement is dead and can be eliminated; it does not contribute to the program's result.
- Example: (a is not used anywhere else)

```
x := z + y b := z + y b := z + y
a := x a := b
x := 2 * a x := 2 * b x := 2 * b
```

- How have I used SSA here?

Applying Local Optimizations

- As the examples show, each local optimization does very little by itself.
- Typically, optimizations interact: performing one optimization enables others.
- So typical optimizing compilers repeatedly perform optimizations until no improvement is possible, or it is no longer cost effective.

An Example II: Algebraic simplification

$\mathrm{a}:=\mathrm{x} * \mathrm{x}$
$\mathrm{b}:=3$
$\mathrm{c}:=\mathrm{x}$
$\mathrm{d}:=\mathrm{c} * \mathrm{c}$
$\mathrm{e}:=\mathrm{b}+\mathrm{b}$
$\mathrm{f}:=\mathrm{a}+\mathrm{d}$
$\mathrm{g}:=\mathrm{e} * \mathrm{f}$

An Example: Initial Code

```
a := x ** 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f
```

```
a := x * x
b := 3
c := x
d := x * x
e := 3+3
f := a + d
g := e * f
```

An Example: Constant folding
$\mathrm{a}:=\mathrm{x} * \mathrm{x}$
$\mathrm{b}:=3$
$\mathrm{c}:=\mathrm{x}$
$\mathrm{d}:=\mathrm{x} * \mathrm{x}$
$\mathrm{e}:=6$
$\mathrm{f}:=\mathrm{a}+\mathrm{d}$
$\mathrm{g}:=\mathrm{e} * \mathrm{f}$
a $:=\mathrm{x} * \mathrm{x}$
c := x
e := 6
g := e * f

An Example: Common Subexpression Elimination

```
a := X * X
b := 3
c := x
d := a
e := 6
f := a + d
g := e * f
```

An Example: Copy propagation
$\mathrm{a}:=\mathrm{x} * \mathrm{x}$
$\mathrm{b}:=3$
$\mathrm{c}:=\mathrm{x}$
$\mathrm{d}:=\mathrm{a}$
$\mathrm{e}:=6$
$\mathrm{f}:=\mathrm{a}+\mathrm{a}$
$\mathrm{g}:=6 * \mathrm{f}$

Peephole Optimizations on Assembly Code

- The optimizations presented before work on intermediate code.
- Peephole optimization is a technique for improving assembly code directly
- The "peephole" is a short subsequence of (usually contiguous) instructions, either continguous, or linked together by the fact that they operate on certain registers that no intervening instructions modify.
- The optimizer replaces the sequence with another equivalent, but (one hopes) better one.
- Write peephole optimizations as replacement rules

$$
\text { i1; } \ldots ; \text { in } \Rightarrow j 1 ; \ldots ; \text { jm }
$$

possibly plus additional constraints. The j's are the improved version of the i's.

Problems:

- Serious problem: what to do with pointers? Problem is aliasing: two names for the same variable:
- As a result, *t may change even if local variable t does not and we never assign to *t.
- Affects language design: rules about overlapping parameters in Fortran, and the restrict keyword in C.
- Arrays are a special case (address calculation): is A[i] the same as $\mathrm{A}[\mathrm{j}]$? Sometimes the compiler can tell, depending on what it knows about i and j.
- What about globals variables and calls?
- Calls are not exactly jumps, because they (almost) always return.
- Can modify global variables used by caller

Peephole optimization examples:

- We'll use the notation '@A' for pattern variables.
- Example:
movl \%@a \%@b; L: movl \%@b \%@a \Rightarrow movl \%@a \%@b
assuming L is not the target of a jump.
- Example:
addl \$@k1, \%@a; movl @k2(\%@a), \%@b

$$
\Rightarrow \text { movl @k1+@k2(\%@a), \%@b }
$$

assuming \%@a is "dead".

- Example (PDP11):

$$
\operatorname{mov} \text { \#@I, @I(@ra) } \Rightarrow \operatorname{mov}(r 7), @ I(@ r a)
$$

This is a real hack: we reuse the value I as both the immediate value and the offset from ra. On the PDP11, the program counter is r7.

- As for local optimizations, peephole optimizations need to be applied repeatedly to get maximum effect.

