
Lecture 26: IL for Arrays, Local Optimization

[Adapted from notes by R. Bodik and G. Necula]
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Generating Intermediate Language (IL) Code

• For this lecture, let’s assume a function—called cgen—that converts
ASTs (denoted by program fragments) into IL code:

cgen (E, R):

"""Generate IL code that evaluates E and puts

the result (if any) into virtual register R."""

• We’ll use the C notations &V to denote the address of entity V, and
*T to denote the contents of memory whose address is T.

• We’ll use t0, t1, etc., to denote virtual registers. If undeclared,
assume they are freshly generated virtual registers.

• Finally, we’ll use the notation “⇒C” where C is IL to mean “output
code C”.
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One-dimensional Arrays

• How do we process retrieval from and assignment to x[i], for an
array x?

• We assume that all items of the array have fixed size—S bytes—
and are arranged sequentially in memory (the usual representation).

• Easy to see that the address of x[i] must be

&x + S · i,

where &x is intended to denote the address of the beginning of x.

• Generically, we call such formulae for getting an element of a data
structure access algorithms.

• The IL might look like this:

cgen(&A[E], t0):

cgen(&A, t1)

cgen(E, t2)

⇒ t3 := t2 * S

⇒ t0 := t1 + t3
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Multi-dimensional Arrays

• A 2D array is a 1D array of 1D arrays.

• Java uses arrays of pointers to arrays for >1D arrays.

• But if row size constant, for faster access and compactness, may
prefer to represent an MxN array as a 1D array of 1D rows (not
pointers to rows): row-major order. . .

• Or, as in FORTRAN, a 1D array of 1D columns: column-major order.

• So apply the formula for 1D arrays repeatedly—first to compute the
beginning of a row and then to compute the column within that row:

&A[i][j] = &A + i · S · N + j · S

for an M-row by N-column array, where S, again, is the size of an
individual element.
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IL for M × N 2D array

cgen(&e1[e2,e3], t):

cgen(e1, t1); cgen(e2,t2); cgen(e3,t3)

cgen(N, t4) # (N need not be constant)

⇒ t5 := t4 * t2

⇒ t6 := t5 + t3

⇒ t7 := t6 * S

⇒ t := t7 + t1
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Array Descriptors

• Calculation of element address &e1[e2,e3] has the form

VO + S1 × e2 +S2 × e3

, where

– VO (&e1[0,0]) is the virtual origin.

– S1 and S2 are strides.

– All three of these are constant throughout the lifetime of the
array (assuming arrays of constant size).

• Therefore, we can package these up into an array descriptor, which
can be passed in lieu of the array itself, as a kind of “fat pointer” to
the array:

&e1[0][0] S×N S
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Array Descriptors (II)

• Assuming that e1 now evaluates to the address of a 2D array de-
scriptor, the IL code becomes:

cgen(&e1[e2,e3], t):

cgen(e1, t1); cgen(e2,t2); cgen(e3,t3)

⇒ t4 := *t1; # The VO

⇒ t5 := *(t1+4) # Stride #1

⇒ t6 := *(t1+8) # Stride #2

⇒ t7 := t5 * t2

⇒ t8 := t6 * t3

⇒ t9 := t4 + t7

⇒ t10:= t9 + t8
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Array Descriptors (III)

• By judicious choice of descriptor values, can make the same formula
work for different kinds of array.

• For example, if lower bounds of indices are 1 rather than 0, must
compute address

&e[1,1] + S1 × (e2-1) + S2 × (e3-1)

• But some algebra puts this into the form

VO’ + S1 × e2 + S2 × e3

where

VO’ = &e[1,1] - S1 - S2 = &e[0,0] (if it existed).

• So with the descriptor

VO’ S×N S

we can use the same code as on the last slide.
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Observation

• These examples show profligate use of registers.

• Doesn’t matter, because this is Intermediate Code. Rely on later
optimization stages to do the right thing. . .

• . . . As we’ll start discussing next.
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Introduction to Code Optimization

Code optimization is the usual term, but is grossly misnamed, since code
produced by “optimizers” is not optimal in any reasonable sense. Pro-
gram improvement would be more appropriate.

Topics:

• Basic blocks

• Control-flow graphs (CFGs)

• Algebraic simplification

• Constant folding

• Static single-assignment form (SSA)

• Common-subexpression elimination (CSE)

• Copy propagation

• Dead-code elimination

• Peephole optimizations
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Basic Blocks

• A basic block is a maximal sequence of instructions with:

– no labels (except at the first instruction), and

– no jumps (except in the last instruction)

• Idea:

– Cannot jump into a basic block, except at the beginning.

– Cannot jump within a basic block, except at end.

– Therefore, each instruction in a basic block is executed after all
the preceding instructions have been executed
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Basic-Block Example

• Consider the basic block

1. L1:

2. t := 2 * x

3. w := t + x

4. if w > 0 goto L2

• No way for (3) to be executed without (2) having been executed
right before

• We can change (3) to w := 3 * x

• Can we eliminate (2) as well?
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Control-Flow Graphs (CFGs)

• A control-flow graph is a directed graph with basic blocks as nodes

• There is an edge from block A to block B if the execution can flow
from the last instruction in A to the first instruction in B:

– The last instruction in A can be a jump to the label of B.

– Or execution can fall through from the end of block A to the
beginning of block B.

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 13



Control-Flow Graphs: Example

x := 1

i := 1

L:

x := x * x

i := i + 1

if i < 10 goto L

• The body of a method (or pro-
cedure) can be represented as a
CFG

• There is one initial node

• All “return” nodes are terminal
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Optimization Overview

• Optimization seeks to improve a program’s utilization of some re-
source:

– Execution time (most often)

– Code size

– Network messages sent

– Battery power used, etc.

• Optimization should not depart from the programming language’s se-
mantics

• So if the semantics of a particular program is deterministic, opti-
mization must not change the answer.

• On the other hand, some program behavior is undefined (e.g., what
happens when an unchecked rule in C is violated), and in those cases,
optimization may cause differences in results.
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A Classification of Optimizations

• For languages like C and Java there are three granularities of opti-
mizations

1. Local optimizations: Apply to a basic block in isolation.

2. Global optimizations: Apply to a control-flow graph (single func-
tion body) in isolation.

3. Inter-procedural optimizations: Apply across function boundaries.

• Most compilers do (1), many do (2) and very few do (3)

• Problem is expense: (2) and (3) typically require superlinear time.
Can usually handle that when limited to a single function, but gets
problematic for larger program.

• In practice, generally don’t implement fanciest known optimizations:
some are hard to implement (esp., hard to get right), some require a
lot of compilation time.

• The goal: maximum improvement with minimum cost.
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Local Optimizations: Algebraic Simplification

• Some statements can be deleted

x := x + 0

x := x * 1

• Some statements can be simplified or converted to use faster op-
erations:

Original Simplified
x := x * 0 x := 0

y := y ** 2 y := y * y

x := x * 8 x := x << 3

x := x * 15 t := x << 4; x := t - x

(on some machines << is faster than *; but not on all!)

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 17



Local Optimization: Constant Folding

• Operations on constants can be computed at compile time.

• Example: x := 2 + 2 becomes x := 4.

• Example: if 2 < 0 jump L becomes a no-op.

• When might constant folding be dangerous?
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Global Optimization: Unreachable code elimination

• Basic blocks that are not reachable from the entry point of the CFG
may be eliminated.

• Why would such basic blocks occur?

• Removing unreachable code makes the program smaller (sometimes
also faster, due to instruction-cache effects, but this is probably
not a terribly large effect.)
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Single Assignment Form

• Some optimizations are simplified if each assignment is to a tempo-
rary that has not appeared already in the basic block.

• Intermediate code can be rewritten to be in (static) single assign-
ment (SSA) form:

x := a + y x := a + y

a := x a1 := x

x := a * x x1 := a1 * x

b := x + a b := x1 + a1

where x1 and a1 are fresh temporaries.
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Common SubExpression (CSE) Elimination in Basic Blocks

• A common subexpression is an expression that appears multiple times
on a right-hand side in contexts where the operands have the same
values in each case (so that the expression will yield the same value).

• Assume that the basic block on the left is in single assignment form.

x := y + z x := y + z

. . .

. . .

w := y + z w := x

• That is, if two assignments have the same right-hand side, we can
replace the second instance of that right-hand side with the vari-
able that was assigned the first instance.

• How did we use the assumption of single assignment here?
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Copy Propagation

• If w := x appears in a block, can replace all subsequent uses of w

with uses of x.

• Example:

b:=z+y b:=z+y

a := b a := b

x:=2*a x:=2*b

• This does not make the program smaller or faster but might enable
other optimizations. For example, if a is not used after this state-
ment, we need not assign to it.

• Or consider:

b:=13 b:=13

x:=2*a x:=2*13

which immediately enables constant folding.

• Again, the optimization, as described, won’t work unless the block is
in single assignment form.
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Another Example of Copy Propagation and Constant
Folding

a := 5 a := 5 a := 5 a := 5 a := 5

x := 2 * a x := 2 * 5 x := 10 x := 10 x := 10

y := x + 6 y := x + 6 y := 10 + 6 y := 16 y := 16

t := x * y t := x * y t := 10 * y t := 10 * 16 t := 160
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Dead Code Elimination

• If that statement w := rhs appears in a basic block and w does not
appear anywhere else in the program, we say that the statement is
dead and can be eliminated; it does not contribute to the program’s
result.

• Example: (a is not used anywhere else)

x := z + y b := z + y b := z + y

a := x a := b

x := 2 * a x := 2 * b x := 2 * b

• How have I used SSA here?
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Applying Local Optimizations

• As the examples show, each local optimization does very little by
itself.

• Typically, optimizations interact: performing one optimization en-
ables others.

• So typical optimizing compilers repeatedly perform optimizations
until no improvement is possible, or it is no longer cost effective.
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An Example: Initial Code

a := x ** 2

b := 3

c := x

d := c * c

e := b * 2

f := a + d

g := e * f
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An Example II: Algebraic simplification

a := x ** 2

b := 3

c := x

d := c * c

e := b * 2

f := a + d

g := e * f
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An Example II: Algebraic simplification

a := x * x

b := 3

c := x

d := c * c

e := b + b

f := a + d

g := e * f
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An Example: Copy propagation

a := x * x

b := 3

c := x

d := c * c

e := b + b

f := a + d

g := e * f
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An Example: Copy propagation

a := x * x

b := 3

c := x

d := x * x

e := 3 + 3

f := a + d

g := e * f
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An Example: Constant folding

a := x * x

b := 3

c := x

d := x * x

e := 3 + 3

f := a + d

g := e * f
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An Example: Constant folding

a := x * x

b := 3

c := x

d := x * x

e := 6

f := a + d

g := e * f

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 29



An Example: Common Subexpression Elimination

a := x * x

b := 3

c := x

d := x * x

e := 6

f := a + d

g := e * f
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An Example: Common Subexpression Elimination

a := x * x

b := 3

c := x

d := a

e := 6

f := a + d

g := e * f
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An Example: Copy propagation

a := x * x

b := 3

c := x

d := a

e := 6

f := a + d

g := e * f
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An Example: Copy propagation

a := x * x

b := 3

c := x

d := a

e := 6

f := a + a

g := 6 * f
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An Example: Dead code elimination

a := x * x

b := 3

c := x

d := a

e := 6

f := a + a

g := 6 * f
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An Example: Dead code elimination

a := x * x

f := a + a

g := 6 * f

This is the final form.
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Peephole Optimizations on Assembly Code

• The optimizations presented before work on intermediate code.

• Peephole optimization is a technique for improving assembly code
directly

– The “peephole” is a short subsequence of (usually contiguous) in-
structions, either continguous, or linked together by the fact
that they operate on certain registers that no intervening in-
structions modify.

– The optimizer replaces the sequence with another equivalent, but
(one hopes) better one.

– Write peephole optimizations as replacement rules

i1; . . . ; in ⇒ j1; . . . ; jm

possibly plus additional constraints. The j’s are the improved ver-
sion of the i’s.
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Peephole optimization examples:

• We’ll use the notation ‘@A’ for pattern variables.

• Example:

movl %@a %@b; L: movl %@b %@a ⇒ movl %@a %@b

assuming L is not the target of a jump.

• Example:

addl $@k1, %@a; movl @k2(%@a), %@b
⇒ movl @k1+@k2(%@a), %@b

assuming %@a is “dead”.

• Example (PDP11):

mov #@I, @I(@ra) ⇒ mov (r7), @I(@ra)

This is a real hack: we reuse the value I as both the immediate value
and the offset from ra. On the PDP11, the program counter is r7.

• As for local optimizations, peephole optimizations need to be applied
repeatedly to get maximum effect.
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Problems:

• Serious problem: what to do with pointers? Problem is aliasing: two
names for the same variable:

– As a result, *t may change even if local variable t does not and
we never assign to *t.

– Affects language design: rules about overlapping parameters in
Fortran, and the restrict keyword in C.

– Arrays are a special case (address calculation): is A[i] the same
as A[j]? Sometimes the compiler can tell, depending on what it
knows about i and j.

• What about globals variables and calls?

– Calls are not exactly jumps, because they (almost) always return.

– Can modify global variables used by caller
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