
Lecture 26: IL for Arrays, Local Optimization

[Adapted from notes by R. Bodik and G. Necula]

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 1

Generating Intermediate Language (IL) Code

• For this lecture, let’s assume a function—called cgen—that converts
ASTs (denoted by program fragments) into IL code:

cgen (E, R):

"""Generate IL code that evaluates E and puts

the result (if any) into virtual register R."""

• We’ll use the C notations &V to denote the address of entity V, and
*T to denote the contents of memory whose address is T.

• We’ll use t0, t1, etc., to denote virtual registers. If undeclared,
assume they are freshly generated virtual registers.

• Finally, we’ll use the notation “⇒C” where C is IL to mean “output
code C”.

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 2

One-dimensional Arrays

• How do we process retrieval from and assignment to x[i], for an
array x?

• We assume that all items of the array have fixed size—S bytes—
and are arranged sequentially in memory (the usual representation).

• Easy to see that the address of x[i] must be

&x + S · i,

where &x is intended to denote the address of the beginning of x.

• Generically, we call such formulae for getting an element of a data
structure access algorithms.

• The IL might look like this:

cgen(&A[E], t0):

cgen(&A, t1)

cgen(E, t2)

⇒ t3 := t2 * S

⇒ t0 := t1 + t3

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 3

Multi-dimensional Arrays

• A 2D array is a 1D array of 1D arrays.

• Java uses arrays of pointers to arrays for >1D arrays.

• But if row size constant, for faster access and compactness, may
prefer to represent an MxN array as a 1D array of 1D rows (not
pointers to rows): row-major order. . .

• Or, as in FORTRAN, a 1D array of 1D columns: column-major order.

• So apply the formula for 1D arrays repeatedly—first to compute the
beginning of a row and then to compute the column within that row:

&A[i][j] = &A + i · S · N + j · S

for an M-row by N-column array, where S, again, is the size of an
individual element.

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 4

IL for M × N 2D array

cgen(&e1[e2,e3], t):

cgen(e1, t1); cgen(e2,t2); cgen(e3,t3)

cgen(N, t4) # (N need not be constant)

⇒ t5 := t4 * t2

⇒ t6 := t5 + t3

⇒ t7 := t6 * S

⇒ t := t7 + t1

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 5

Array Descriptors

• Calculation of element address &e1[e2,e3] has the form

VO + S1 × e2 +S2 × e3

, where

– VO (&e1[0,0]) is the virtual origin.

– S1 and S2 are strides.

– All three of these are constant throughout the lifetime of the
array (assuming arrays of constant size).

• Therefore, we can package these up into an array descriptor, which
can be passed in lieu of the array itself, as a kind of “fat pointer” to
the array:

&e1[0][0] S×N S

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 6

Array Descriptors (II)

• Assuming that e1 now evaluates to the address of a 2D array de-
scriptor, the IL code becomes:

cgen(&e1[e2,e3], t):

cgen(e1, t1); cgen(e2,t2); cgen(e3,t3)

⇒ t4 := *t1; # The VO

⇒ t5 := *(t1+4) # Stride #1

⇒ t6 := *(t1+8) # Stride #2

⇒ t7 := t5 * t2

⇒ t8 := t6 * t3

⇒ t9 := t4 + t7

⇒ t10:= t9 + t8

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 7

Array Descriptors (III)

• By judicious choice of descriptor values, can make the same formula
work for different kinds of array.

• For example, if lower bounds of indices are 1 rather than 0, must
compute address

&e[1,1] + S1 × (e2-1) + S2 × (e3-1)

• But some algebra puts this into the form

VO’ + S1 × e2 + S2 × e3

where

VO’ = &e[1,1] - S1 - S2 = &e[0,0] (if it existed).

• So with the descriptor

VO’ S×N S

we can use the same code as on the last slide.

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 8

Observation

• These examples show profligate use of registers.

• Doesn’t matter, because this is Intermediate Code. Rely on later
optimization stages to do the right thing. . .

• . . . As we’ll start discussing next.

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 9

Introduction to Code Optimization

Code optimization is the usual term, but is grossly misnamed, since code
produced by “optimizers” is not optimal in any reasonable sense. Pro-
gram improvement would be more appropriate.

Topics:

• Basic blocks

• Control-flow graphs (CFGs)

• Algebraic simplification

• Constant folding

• Static single-assignment form (SSA)

• Common-subexpression elimination (CSE)

• Copy propagation

• Dead-code elimination

• Peephole optimizations

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 10

Basic Blocks

• A basic block is a maximal sequence of instructions with:

– no labels (except at the first instruction), and

– no jumps (except in the last instruction)

• Idea:

– Cannot jump into a basic block, except at the beginning.

– Cannot jump within a basic block, except at end.

– Therefore, each instruction in a basic block is executed after all
the preceding instructions have been executed

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 11

Basic-Block Example

• Consider the basic block

1. L1:

2. t := 2 * x

3. w := t + x

4. if w > 0 goto L2

• No way for (3) to be executed without (2) having been executed
right before

• We can change (3) to w := 3 * x

• Can we eliminate (2) as well?

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 12

Control-Flow Graphs (CFGs)

• A control-flow graph is a directed graph with basic blocks as nodes

• There is an edge from block A to block B if the execution can flow
from the last instruction in A to the first instruction in B:

– The last instruction in A can be a jump to the label of B.

– Or execution can fall through from the end of block A to the
beginning of block B.

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 13

Control-Flow Graphs: Example

x := 1

i := 1

L:

x := x * x

i := i + 1

if i < 10 goto L

• The body of a method (or pro-
cedure) can be represented as a
CFG

• There is one initial node

• All “return” nodes are terminal

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 14

Optimization Overview

• Optimization seeks to improve a program’s utilization of some re-
source:

– Execution time (most often)

– Code size

– Network messages sent

– Battery power used, etc.

• Optimization should not depart from the programming language’s se-
mantics

• So if the semantics of a particular program is deterministic, opti-
mization must not change the answer.

• On the other hand, some program behavior is undefined (e.g., what
happens when an unchecked rule in C is violated), and in those cases,
optimization may cause differences in results.

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 15

A Classification of Optimizations

• For languages like C and Java there are three granularities of opti-
mizations

1. Local optimizations: Apply to a basic block in isolation.

2. Global optimizations: Apply to a control-flow graph (single func-
tion body) in isolation.

3. Inter-procedural optimizations: Apply across function boundaries.

• Most compilers do (1), many do (2) and very few do (3)

• Problem is expense: (2) and (3) typically require superlinear time.
Can usually handle that when limited to a single function, but gets
problematic for larger program.

• In practice, generally don’t implement fanciest known optimizations:
some are hard to implement (esp., hard to get right), some require a
lot of compilation time.

• The goal: maximum improvement with minimum cost.

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 16

Local Optimizations: Algebraic Simplification

• Some statements can be deleted

x := x + 0

x := x * 1

• Some statements can be simplified or converted to use faster op-
erations:

Original Simplified
x := x * 0 x := 0

y := y ** 2 y := y * y

x := x * 8 x := x << 3

x := x * 15 t := x << 4; x := t - x

(on some machines << is faster than *; but not on all!)

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 17

Local Optimization: Constant Folding

• Operations on constants can be computed at compile time.

• Example: x := 2 + 2 becomes x := 4.

• Example: if 2 < 0 jump L becomes a no-op.

• When might constant folding be dangerous?

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 18

Global Optimization: Unreachable code elimination

• Basic blocks that are not reachable from the entry point of the CFG
may be eliminated.

• Why would such basic blocks occur?

• Removing unreachable code makes the program smaller (sometimes
also faster, due to instruction-cache effects, but this is probably
not a terribly large effect.)

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 19

Single Assignment Form

• Some optimizations are simplified if each assignment is to a tempo-
rary that has not appeared already in the basic block.

• Intermediate code can be rewritten to be in (static) single assign-
ment (SSA) form:

x := a + y x := a + y

a := x a1 := x

x := a * x x1 := a1 * x

b := x + a b := x1 + a1

where x1 and a1 are fresh temporaries.

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 20

Common SubExpression (CSE) Elimination in Basic Blocks

• A common subexpression is an expression that appears multiple times
on a right-hand side in contexts where the operands have the same
values in each case (so that the expression will yield the same value).

• Assume that the basic block on the left is in single assignment form.

x := y + z x := y + z

. . .

. . .

w := y + z w := x

• That is, if two assignments have the same right-hand side, we can
replace the second instance of that right-hand side with the vari-
able that was assigned the first instance.

• How did we use the assumption of single assignment here?

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 21

Copy Propagation

• If w := x appears in a block, can replace all subsequent uses of w

with uses of x.

• Example:

b:=z+y b:=z+y

a := b a := b

x:=2*a x:=2*b

• This does not make the program smaller or faster but might enable
other optimizations. For example, if a is not used after this state-
ment, we need not assign to it.

• Or consider:

b:=13 b:=13

x:=2*a x:=2*13

which immediately enables constant folding.

• Again, the optimization, as described, won’t work unless the block is
in single assignment form.

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 22

Another Example of Copy Propagation and Constant
Folding

a := 5 a := 5 a := 5 a := 5 a := 5

x := 2 * a x := 2 * 5 x := 10 x := 10 x := 10

y := x + 6 y := x + 6 y := 10 + 6 y := 16 y := 16

t := x * y t := x * y t := 10 * y t := 10 * 16 t := 160

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 23

Dead Code Elimination

• If that statement w := rhs appears in a basic block and w does not
appear anywhere else in the program, we say that the statement is
dead and can be eliminated; it does not contribute to the program’s
result.

• Example: (a is not used anywhere else)

x := z + y b := z + y b := z + y

a := x a := b

x := 2 * a x := 2 * b x := 2 * b

• How have I used SSA here?

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 24

Applying Local Optimizations

• As the examples show, each local optimization does very little by
itself.

• Typically, optimizations interact: performing one optimization en-
ables others.

• So typical optimizing compilers repeatedly perform optimizations
until no improvement is possible, or it is no longer cost effective.

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 25

An Example: Initial Code

a := x ** 2

b := 3

c := x

d := c * c

e := b * 2

f := a + d

g := e * f

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 26

An Example II: Algebraic simplification

a := x ** 2

b := 3

c := x

d := c * c

e := b * 2

f := a + d

g := e * f

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 27

An Example II: Algebraic simplification

a := x * x

b := 3

c := x

d := c * c

e := b + b

f := a + d

g := e * f

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 27

An Example: Copy propagation

a := x * x

b := 3

c := x

d := c * c

e := b + b

f := a + d

g := e * f

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 28

An Example: Copy propagation

a := x * x

b := 3

c := x

d := x * x

e := 3 + 3

f := a + d

g := e * f

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 28

An Example: Constant folding

a := x * x

b := 3

c := x

d := x * x

e := 3 + 3

f := a + d

g := e * f

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 29

An Example: Constant folding

a := x * x

b := 3

c := x

d := x * x

e := 6

f := a + d

g := e * f

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 29

An Example: Common Subexpression Elimination

a := x * x

b := 3

c := x

d := x * x

e := 6

f := a + d

g := e * f

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 30

An Example: Common Subexpression Elimination

a := x * x

b := 3

c := x

d := a

e := 6

f := a + d

g := e * f

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 30

An Example: Copy propagation

a := x * x

b := 3

c := x

d := a

e := 6

f := a + d

g := e * f

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 31

An Example: Copy propagation

a := x * x

b := 3

c := x

d := a

e := 6

f := a + a

g := 6 * f

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 31

An Example: Dead code elimination

a := x * x

b := 3

c := x

d := a

e := 6

f := a + a

g := 6 * f

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 32

An Example: Dead code elimination

a := x * x

f := a + a

g := 6 * f

This is the final form.

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 32

Peephole Optimizations on Assembly Code

• The optimizations presented before work on intermediate code.

• Peephole optimization is a technique for improving assembly code
directly

– The “peephole” is a short subsequence of (usually contiguous) in-
structions, either continguous, or linked together by the fact
that they operate on certain registers that no intervening in-
structions modify.

– The optimizer replaces the sequence with another equivalent, but
(one hopes) better one.

– Write peephole optimizations as replacement rules

i1; . . . ; in ⇒ j1; . . . ; jm

possibly plus additional constraints. The j’s are the improved ver-
sion of the i’s.

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 33

Peephole optimization examples:

• We’ll use the notation ‘@A’ for pattern variables.

• Example:

movl %@a %@b; L: movl %@b %@a ⇒ movl %@a %@b

assuming L is not the target of a jump.

• Example:

addl $@k1, %@a; movl @k2(%@a), %@b
⇒ movl @k1+@k2(%@a), %@b

assuming %@a is “dead”.

• Example (PDP11):

mov #@I, @I(@ra) ⇒ mov (r7), @I(@ra)

This is a real hack: we reuse the value I as both the immediate value
and the offset from ra. On the PDP11, the program counter is r7.

• As for local optimizations, peephole optimizations need to be applied
repeatedly to get maximum effect.

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 34

Problems:

• Serious problem: what to do with pointers? Problem is aliasing: two
names for the same variable:

– As a result, *t may change even if local variable t does not and
we never assign to *t.

– Affects language design: rules about overlapping parameters in
Fortran, and the restrict keyword in C.

– Arrays are a special case (address calculation): is A[i] the same
as A[j]? Sometimes the compiler can tell, depending on what it
knows about i and j.

• What about globals variables and calls?

– Calls are not exactly jumps, because they (almost) always return.

– Can modify global variables used by caller

Last modified: Thu Apr 22 17:58:51 2010 CS164: Lecture #24 35

	Lecture 26: IL for Arrays, Local Optimization
	Generating Intermediate Language (IL) Code
	One-dimensional Arrays
	Multi-dimensional Arrays
	IL for MN 2D array
	Array Descriptors
	Array Descriptors (II)
	Array Descriptors (III)
	Observation
	Introduction to Code Optimization
	Basic Blocks
	Basic-Block Example
	Control-Flow Graphs (CFGs)
	Control-Flow Graphs: Example
	Optimization Overview
	A Classification of Optimizations
	Local Optimizations: Algebraic Simplification
	Local Optimization: Constant Folding
	Global Optimization: Unreachable code elimination
	Single Assignment Form
	Common SubExpression (CSE) Elimination in Basic Blocks
	Copy Propagation
	Another Example of Copy Propagation and Constant Folding
	Dead Code Elimination
	Applying Local Optimizations
	An Example: Initial Code
	An Example II: Algebraic simplification
	An Example: Copy propagation
	An Example: Constant folding
	An Example: Common Subexpression Elimination
	An Example: Copy propagation
	An Example: Dead code elimination
	Peephole Optimizations on Assembly Code
	Peephole optimization examples:
	Problems:

