
Lecture 26: Global Optimization

[Adapted from notes by R. Bodik and G. Necula]
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Topics

• Global optimization refers to program optimizations that encompass
multiple basic blocks in a function.

• (I have used the term galactic optimization to refer to going beyond
function boundaries, but it hasn’t caught on; we call it just interpro-
cedural optimization.)

• Since we can’t use the usual assumptions about basic blocks, global
optimization requires global flow analysis to see where values can
come from and get used.

• The overall question is: When can local optimizations (from the last
lecture) be applied across multiple basic blocks?
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A Simple Example: Copy Propagation

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X
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A Simple Example: Copy Propagation

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

• Without other assignments to X, it is valid to treat the red parts as
if they were in the same basic block.
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A Simple Example: Copy Propagation

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * 3

• Without other assignments to X, it is valid to treat the red parts as
if they were in the same basic block.
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A Simple Example: Copy Propagation

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

• Without other assignments to X, it is valid to treat the red parts as
if they were in the same basic block.

• But as soon as one other block on the path to the bottom block
assigns to X, we can no longer do so.

• It is correct to apply copy propagation to a variable x from an as-
signment statement A: x := ... to a given use of x in statement B

only if the last assignment to x in every path from to B is A.
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Issues

• This correctness condition is not trivial to check

• “All paths” includes paths around loops and through branches of con-
ditionals

• Checking the condition requires global analysis: an analysis of the
entire control-flow graph for one method body.

• This is typical for optimizations that depend on some property P at
a particular point in program execution.

• Indeed, property P is typically undecidable, so program optimization
is all about making conservative (but not cowardly) approximations
of P .
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Undecidability of Program Properties

• Rice’s “theorem:” Most interesting dynamic properties of a program
are undecidable. E.g.,

– Does the program halt on all (some) inputs? (Halting Problem)

– Is the result of a function F always positive? (Consider

def F(x):

H(x)

return 1

Result is positive iff H halts.)

• Syntactic properties are typically decidable (e.g., “How many occur-
rences of x are there?”).

• Theorem does not apply in absence of loops
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Conservative Program Analyses

• If a certain optimization requires P to be true, then

– If we know that P is definitely true, we can apply the optimiza-
tion

– If we don’t know whether P is true, we simply don’t do the op-
timization. Since optimizations are not supposed to change the
meaning of a program, this is safe.

• In other words, in analyzing a program for properties like P , it is
always correct (albeit non-optimal) to say “don’t know.”

• The trick is to say it as seldom as possible.

• Global dataflow analysis is a standard technique for solving problems
with these characteristics.
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Example: Global Constant Propagation

• Global constant propagation is just the restriction of copy propaga-
tion to constants.

• In this example, we’ll consider doing it for a single variable (X).

• At every program point (i.e., before or after any instruction), we
associate one of the following values with X

Value Interpretation

# (aka bottom) No value has reached here (yet)

c (For c a constant) X definitely has the value c.

* (aka top) Don’t know what, if any, constant value X has.
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Example of Result of Constant Propagation

X := 3

B > 0

X = *

X = 3

X = 3

Y := Z + W

X := 4

X = 3

X = 3

X = 4

Y := 0
X = 3

X = 3

A := 2 * X
X = *

X = *
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Using Analysis Results

• Given global constant information, it is easy to perform the opti-
mization:

– If the point immediately before a statement using x tells us that
x = c, then replace x with c.

– Otherwise, leave it alone (the conservative option).

• But how do we compute these properties x = ...?
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Transfer Functions

• Basic Idea: Express the analysis of a complicated program as a com-
bination of simple rules relating the change in information between
adjacent statements

• That is, we “push” or transfer information from one statement to
the next.

• For each statement s, we end up with information about the value
of x immediately before and after s:

Cin(X,s) = value of x before s

Cout(X,s) = value of x after s

• Here, the “values of x” we use come from an abstract domain, con-
taining the values we care about—#, *, k—values computed statically
by our analysis.

• For the constant propagation problem, we’ll compute Cout from Cin,
and we’ll get Cin from the Couts of predecessor statements, Cout(X,
p1),. . . ,Cout(X,pn).
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Constant Propagation: Rule 1

p1

X = ?
p2

X = ?
p3

X = *
· · ·

pn

X = ?

s
X = *

If Cout(X, pi) = * for some i, then Cin(X, s) = *
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Constant Propagation: Rule 2

p1

X = c
p2

X = ?
p3

X = d
· · ·

pn

X = ?

s
X = *

If Cout(X, pi) = c and Cout(X, pj) = d with constants c 6= d,
then Cin(X, s) = *
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Constant Propagation: Rule 3

p1

X = c
p2

X = #
p3

X = c
· · ·

pn

X = #

s
X = c

If Cout(X, pi) = c for some i and
Cout(X, pj) = c or Cout(X, pj) = # for all j,

then Cin(X, s) = c

Last modified: Tue Apr 27 00:21:58 2010 CS164: Lecture #26 13

Constant Propagation: Rule 4

p1

X = #
p2

X = #
p3

X = #
· · ·

pn

X = #

s
X = #

If Cout(X, pj) = # for all j, then Cin(X, s) = #
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Constant Propagation: Computing Cout

• Rules 1–4 relate the out of one statement to the in of the succes-
sor statements, thus propagating information forward across CFG
edges.

• Now we need local rules relating the in and out of a single statement
to propagate information across statements.
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Constant Propagation: Rule 5

s
X = #

X = #

Cout(X, s) = # if Cin(X, s) = #

The value ‘#’ means “so far, no value of X gets here, because the we
don’t (yet) know that this statement ever gets executed.”
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Constant Propagation: Rule 6

X := c
X = ?

X = c

Cout(X, X := c) = c if c is a constant and ? is not #.
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Constant Propagation: Rule 7

X := f(. . . )
X = ?

X = *

Cout(X, X := f(. . . )) = * for any function call, if ? is not #.
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Constant Propagation: Rule 8

Y := . . .
X = α

X = α

Cout(X, Y := . . . ) = Cin(X, Y := . . . ) if X and Y are different variables.
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Propagation Algorithm

• To use these rules, we employ a standard technique: iteration to a
fixed point:

• Mark all points in the program with current approximations of the
variable(s) of interest (X in our examples).

• Set the initial approximations to X = * for the program entry point
and X = # everywhere else.

• Repeatedly apply rules 1–8 every place they are applicable until noth-
ing changes—until the program is at a fixed point with respect to all
the transfer rules.

• We can be clever about this, keeping a list of all nodes any of whose
predecessors’ Cout values have changed since the last rule applica-
tion.
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An Example of the Algorithm

X := 3

B > 0

X = *

X = #

X = #

Y := Z + W
X = #

X = #
Y := 0

X = #

X = #

A := 2 * X

A < B

X = #

X = #

X = #
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An Example of the Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = #

X = #
Y := 0

X = #

X = #

A := 2 * X

A < B

X = #

X = #

X = #
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An Example of the Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = # 3

X = # 3
Y := 0

X = # 3

X = # 3

A := 2 * X

A < B

X = #

X = #

X = #
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An Example of the Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = # 3

X = # 3
Y := 0

X = # 3

X = # 3

A := 2 * X

A < B

X = # 3

X = # 3

X = # 3

So we can replace X with 3 in the bottom block.
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Another Example of the Propagation Algorithm

X := 3

B > 0

X = *

X = #

X = #

Y := Z + W

X := 4

X = #

X = #

X = #

Y := 0
X = #

X = #

A := 2 * X

A < B

X = #

X = #

X = #
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Another Example of the Propagation Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W

X := 4

X = #

X = #

X = #

Y := 0
X = #

X = #

A := 2 * X

A < B

X = #

X = #

X = #
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Another Example of the Propagation Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W

X := 4

X = # 3

X = # 3

X = # 4

Y := 0
X = # 3

X = # 3

A := 2 * X

A < B

X = #

X = #

X = #
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Another Example of the Propagation Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W

X := 4

X = # 3

X = # 3

X = # 4

Y := 0
X = # 3

X = # 3

A := 2 * X

A < B

X = # *

X = # *

X = # *

Last modified: Tue Apr 27 00:21:58 2010 CS164: Lecture #26 22

Another Example of the Propagation Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W

X := 4

X = # 3

X = # 3

X = # 4

Y := 0
X = # 3 *

X = # 3 *

A := 2 * X

A < B

X = # *

X = # *

X = # *

Here, we cannot replace X in two of the basic blocks.
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A Third Example

X := 3

B > 0

X = *

X = #

X = #

Y := Z + W
X = #

X = #
Y := 0

X = #

X = #

A := 2 * X

X := 4

A < B

X = #

X = #

X = #

X = #
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A Third Example

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = #

X = #
Y := 0

X = #

X = #

A := 2 * X

X := 4

A < B

X = #

X = #

X = #

X = #
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A Third Example

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = # 3

X = # 3
Y := 0

X = # 3

X = # 3

A := 2 * X

X := 4

A < B

X = #

X = #

X = #

X = #
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A Third Example

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = # 3

X = # 3
Y := 0

X = # 3

X = # 3

A := 2 * X

X := 4

A < B

X = # 3

X = # 3

X = # 4

X = # 4
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A Third Example

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = # 3

X = # 3
Y := 0

X = # 3 *

X = # 3 *

A := 2 * X

X := 4

A < B

X = # 3

X = # 3

X = # 4

X = # 4
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A Third Example

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = # 3

X = # 3
Y := 0

X = # 3 *

X = # 3 *

A := 2 * X

X := 4

A < B

X = # 3 *

X = # 3 *

X = # 4

X = # 4

Likewise, we cannot replace X.
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Comments

• The examples used a depth-first approach to considering possible
places to apply the rules, starting from the entry point.

• In fact, the order in which one looks at statements is irrelevant.
We could have changed the Cout values after the assignments to X

first, for example.

• The # value is necessary to avoid deciding on a final value too soon.
In effect, it allows us to tentatively propogate constant values through
before finding out what happens in paths we haven’t looked at yet.
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Ordering the Abstract Domain

• We can simplify the presentation of the analysis by ordering the
values # < c < *.

• Or pictorially, with lower meaning less than,

· · · −1 0 1 2 · · ·

*

#

• . . . a mathematical structure known as a lattice.

• With this, our rule for computing Cin is simply a least upper bound:

Cin(x, s) = lub { Cout(x, p) such that p is a predecessor of s }.
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Termination

• Simply saying “repeat until nothing changes” doesn’t guarantee that
eventually nothing changes.

• But the use of lub explains why the algorithm terminates:

– Values start as # and only increase

– By the structure of the lattice, therefore, each value can only
change twice.

• Thus the algorithm is linear in program size. The number of steps

= 2× Number of Cin and Cout values computed

= 4× Number of program statements.
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Liveness Analysis

Once constants have been globally propagated, we would like to elimi-
nate dead code

X := 3

B > 0

X = *

X = 3

X = 3

Y := Z + W
X = 3

X = 3
Y := 0

X = 3

X = 3

A := 2 * X

A < B

X = 3

X = 3

X = 3

After constant propagation, X := 3 is dead code (assuming this is the
entire CFG)
Last modified: Tue Apr 27 00:21:58 2010 CS164: Lecture #26 27

Terminology: Live and Dead

• In the program

X := 3; /*(1)*/ X = 4; /*(2)*/ Y := X /*(3)*/

• the variable X is dead (never used) at point (1), live at point (2), and
may or may not be live at point (3), depending on the rest of the
program.

• More generally, a variable x is live at statement s if

– There exists a statement s’ that uses x;

– There is a path from s to s’; and

– That path has no intervening assignment to x

• A statement x := ... is dead code (and may be deleted) if x is
dead after the assignment.
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Computing Liveness

• We can express liveness as a function of information transferred
between adjacent statements, just as in copy propagation

• Liveness is simpler than constant propagation, since it is a boolean
property (true or false).

• That is, the lattice has two values, with false<true.

• It also differs in that liveness depends on what comes after a state-
ment, not before—we propagate information backwards through the
flow graph, from Lout (liveness information at the end of a stat-
ment) to Lin.
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Liveness Rule 1

s1

L(X) = ?
s2

L(X) = ?
s3

L(X) = true
· · ·

sn

L(X) = ?

p
L(X) = true

• So

Lout(x, p) = lub { Lin(x, s) such that s is a predecessor of p }.

• Here, least upper bound (lub) is the same as “or”.
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Liveness Rule 2

. . . := . . . X . . .
L(X) = true

L(X) = ?

Lout(X, s) = true if s uses the previous value of X.

• The same rule applies to any other statement that uses the value of
X, such as tests (e.g., X < 0).
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Liveness Rule 3

X := e
L(X) = false

L(X) = ?

Lout(X, X := e) = false if e does not use the previous value of X.
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Liveness Rule 4

s
L(X) = α

L(X) = α

Lout(X, s) = Lin(X, s) if s does not mention X.

Last modified: Tue Apr 27 00:21:58 2010 CS164: Lecture #26 33

Propagation Algorithm for Liveness

• Initially, let all Lin and Lout values be false.

• Set Lout value at the program exit to true iff x is going to be used
elsewhere (e.g., if it is global and we are analyzing only one proce-
dure).

• As before, repeatedly pick s where one of 1–4 does not hold and
update using the appropriate rule, until there are no more violations.

• When we’re done, we can eliminate assignments to X if X is dead at
the point after the assignment.
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Example of Liveness Computation

X := 3

B > 0

L(X) = false

L(X) = false

L(X) = false

Y := Z + W

L(X) = false

L(X) = false

Y := 0
L(X) = false

L(X) = false

A := 2 * X

X := X * X

X := 4

A < B

L(X) = false
L(X) = false
L(X) = false
L(X) = false
L(X) = false

L(X) = false
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Example of Liveness Computation

X := 3

B > 0

L(X) = false

L(X) = false

L(X) = false

Y := Z + W

L(X) = false

L(X) = false

Y := 0
L(X) = false

L(X) = false

A := 2 * X

X := X * X

X := 4

A < B

L(X) = false true
L(X) = false true
L(X) = false
L(X) = false
L(X) = false

L(X) = false

Last modified: Tue Apr 27 00:21:58 2010 CS164: Lecture #26 35

Example of Liveness Computation

X := 3

B > 0

L(X) = false

L(X) = false

L(X) = false

Y := Z + W

L(X) = false true

L(X) = false true

Y := 0
L(X) = false true

L(X) = false true

A := 2 * X

X := X * X

X := 4

A < B

L(X) = false true
L(X) = false true
L(X) = false
L(X) = false
L(X) = false

L(X) = false
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Example of Liveness Computation

X := 3

B > 0

L(X) = false

L(X) = false true

L(X) = false true

Y := Z + W

L(X) = false true

L(X) = false true

Y := 0
L(X) = false true

L(X) = false true

A := 2 * X

X := X * X

X := 4

A < B

L(X) = false true
L(X) = false true
L(X) = false
L(X) = false true
L(X) = false true

L(X) = false
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Termination

• As before, a value can only change a bounded number of times: the
bound being 1 in this case.

• Termination is guaranteed

• Once the analysis is computed, it is simple to eliminate dead code,
but having done so, we must recompute the liveness information.
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SSA and Global Analysis

• For local optimizations, the single static assignment (SSA) form was
useful.

• But applying it to a full CFG is requires a trick.

• E.g., how do we avoid two assignments to the temporary holding x

after this conditional?

if a > b:

x = a

else:

x = b

# where is x at this point?

• Answer: a small kludge known as φ “functions”

• Turn the previous example into this:

if a > b:

x1 = a

else:

x2 = b

x3 = φ(x1, x2)
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φ Functions

• An artificial device to allow SSA notation in CFGs.

• In a basic block, each variable is associated with one definition,

• φ functions in effect associate each variable with a set of possible
definitions.

• In general, one tries to introduce them in strategic places so as to
minimize the total number of φs.

• Although this device increases number of assignments in IL, regis-
ter allocation can remove many by assigning related IL registers to
the same real register.

• Their use enables us to extend such optimizations as CSE elimination
in basic blocks to Global CSE Elimination.

• With SSA form, easy to tell (conservatively) if two IL assignments
compute the same value: just see if they have the same right-hand
side. The same variables indicate the same values.
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Summary

• We’ve seen two kinds of analysis:

– Constant propagation is a forward analysis: information is pushed
from inputs to outputs.

– Liveness is a backwards analysis: information is pushed from out-
puts back towards inputs.

• But both make use of essentially the same algorithm.

• Numerous other analyses fall into these categories, and allow us to
use a similar formulation:

– An abstract domain (abstract relative to actual values);

– Local rules relating information between consecutive program points
around a single statement; and

– Lattice operations like least upper bound (or join) or greatest
lower bound (or meet) to relate inputs and outputs of adjoining
statements.
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