
Lecture 3: Finite Automata

Administrivia

• Everyone should now be registered electronically using the link on
our webpage. If you haven’t, do so today!

• I’d like to have teams formed by next Wednesday at the latest.

• Homework #2 is posted; due next Tuesday.

• Please fill out the background survey linked to on the homework
page.

Last modified: Sun Jan 24 19:03:07 2010 CS164: Lecture #3 1

Classical Pattern-Matching Implementation

• For compilers, can generally make do with “classical” regular expres-
sions.

• Implementable using finite(-state) automata or FAs. (“Finite state”
= “finite memory”).

• Classical construction:

regular expression ⇒ nondeterministic FA (NFA)
⇒ deterministic FA (DFA) ⇒ table-driven program.

Last modified: Sun Jan 24 19:03:07 2010 CS164: Lecture #3 2

Review: FA operation

• A FA is a graph whose nodes are states (of memory) and whose edges
are state transitions. There are a finite number of nodes.

• One state is the designated start state.

• Some subset of the nodes are final states.

• Each transition is labeled with a set of symbols (characters, etc.) or
ǫ.

• A FA recognizes a string c1c2 · · · cn if there is a path (sequence of
edges) from the start state to a final state such that the labels
of the edges in sequence, aside from ǫ edges, respectively contain
c1, c2, . . . , cn.

• If the edges leaving any node have disjoint sets of characters and
if there are no ǫ nodes, FA is a DFA, else an NFA.

Last modified: Sun Jan 24 19:03:07 2010 CS164: Lecture #3 3

Example: What does this DFA recognize?

1 1 1 1 1

1

0 0 0 0 0 0

What is the simplest equivalent NFA you can think of?

Last modified: Sun Jan 24 19:03:07 2010 CS164: Lecture #3 4

Example: What does this NFA recognize?

A B C D A B D

[A-Z]

What is the simplest equivalent DFA you can think of?

Last modified: Sun Jan 24 19:03:07 2010 CS164: Lecture #3 5

Example: What does this NFA recognize?

X Y

[XY] Z

[XY]

ǫ

ǫ

ǫ

What is the simplest equivalent DFA you can think of?

Last modified: Sun Jan 24 19:03:07 2010 CS164: Lecture #3 6

Review: Classical Regular Expressions to NFAs (I)

ǫ

a
a

R1 R2 R1 R2

Last modified: Sun Jan 24 19:03:07 2010 CS164: Lecture #3 7

Review: Classical Regular Expressions to NFAs (II)

R1 | R2

R1

R2

ǫ

ǫ

ǫ

ǫ

R∗ R

ǫ

ǫ

Last modified: Sun Jan 24 19:03:07 2010 CS164: Lecture #3 8

Extensions?

• How would you translate φ (the empty language, containing no strings)
into an FA?

• How could you translate ‘R?’ into an NFA?

• How could you translate ‘R+’ into an NFA?

• How could you translate ‘R1|R2| · · · |Rn’ into an NFA?

Last modified: Sun Jan 24 19:03:07 2010 CS164: Lecture #3 9

Example of Conversion

How would you translate ((ab)*|c)* into an NFA?

Last modified: Sun Jan 24 19:03:07 2010 CS164: Lecture #3 10

Abstract Implementation of NFAs

1
X

2
Y

3

4
[XY]

5
Z

6

[XY]

ǫ0

ǫ

ǫ

1
X

2
Y

3

4
[XY]

5
Z

6

[XY]

ǫ0

ǫ

ǫ

1
X

2
Y

3

4
[XY]

5
Z

6

[XY]

ǫ0

ǫ

ǫ

1
X

2
Y

3

4
[XY]

5
Z

6

[XY]

ǫ0

ǫ

ǫ

1
X

2
Y

3

4
[XY]

5
Z

6

[XY]

ǫ0

ǫ

ǫ String: XYYZ

Last modified: Sun Jan 24 19:03:07 2010 CS164: Lecture #3 11

Review: Converting to DFAs

• OBSERVATION: The set of states that are marked (colored red)
changes with each character in a way that depends only on the set
and the character.

• In other words, machine on previous slide acted like this DFA:

014
X

25
Y

35

5
Z

6

[XY]

Y X [XY] Z

Z

Last modified: Sun Jan 24 19:03:07 2010 CS164: Lecture #3 12

DFAs as Programs

• Can realize DFA in program with control structure:

state = INITIAL;

for (s = input; *s != ’\0’; s += 1) {

switch (state):

case INITIAL:

if (*s == ’a’) state = A_STATE; break;

case A_STATE:

if (*s == ’b’) state = B_STATE; else state = INITIAL; break;

...

}

}

return state == FINAL1 || state == FINAL2;

• Or with data structure (table driven):

state = INITIAL;

for (s = input; *s != ’\0’; s += 1)

state = transition[state][s];

return isfinal[state];

Last modified: Sun Jan 24 19:03:07 2010 CS164: Lecture #3 13

What Flex Does

• Flex program specification is giant regular expression of the form
R1|R2| · · · |Rn, where none of the Ri match ǫ.

• Each final state labeled with some action.

• Converted, by previous methods, into a table-driven DFA.

• But, this particular DFA is used to recognize prefixes of the (re-
maining) input: initial portions that put machine in a final state.

• Which final state(s) we end up in determine action. To deal with
multiple actions:

– Match longest prefix (“maximum munch”).

– If there are multiple matches, apply first rule in order.

Last modified: Sun Jan 24 19:03:07 2010 CS164: Lecture #3 14

How Do They Do It?

• How can we use a DFA to recognize longest match?

• How can we use DFA to act on first of equal-length matches?

• How can we use a DFA to handle the R1/R2 pattern (matches just
R1 but only if followed by R2, like R1(?=R2) in Python)?

Last modified: Sun Jan 24 19:03:07 2010 CS164: Lecture #3 15

	Lecture 3: Finite Automata
	Classical Pattern-Matching Implementation
	Review: FA operation
	Example: What does this DFA recognize?
	Example: What does this NFA recognize?
	Example: What does this NFA recognize?
	Review: Classical Regular Expressions to NFAs (I)
	Review: Classical Regular Expressions to NFAs (II)
	Extensions?
	Example of Conversion
	Abstract Implementation of NFAs
	Review: Converting to DFAs
	DFAs as Programs
	What Flex Does
	How Do They Do It?

