A Little Notation Lecture 7: General and Bottom-Up Parsing Here and in lectures to follow, we'll often have to refer to general Administrivia productions or derivations. In these, we'll use various alphabets to mean • Homework 4 now out. It includes a component on Project #1, which various thinas: you must do as a team. • Capital roman letters are nonterminals (A, B,...). • If you don't have a team, I'll assign one today. At the moment, I know of only one person without a team. • Lower-case roman letters are terminals (or tokens, characters, etc.) • There are a number of people who have a team, but who have not • Lower-case greek letters are sequences of zero or more terminal turned in one or more homeworks—not a good idea! These are easy and nonterminal symbols, such as appear in sentential forms or on points, and you must avoid falling behind. the right sides of productions (α, β, \ldots) . Subscripts on lower-case greek letters indicate individual symbols within them, so $\alpha = \alpha_1 \alpha_n \dots \alpha_n$ and each α_i is a single terminal or nonterminal. For example, • $A: \alpha$ might describe the production e: e '+' t, • $B \Rightarrow \alpha A \gamma \Rightarrow \alpha \beta \gamma$ might describe the derivation steps e \Rightarrow e '+' t \Rightarrow e '+' ID (α is e '+'; A is t; B is e; and γ is empty.) CS164: Lecture #7 1 Last modified: Wed Feb 10 15:01:01 2010 Last modified: Wed Feb 10 15:01:01 2010 CS164: Lecture #7 2 Example **Fixing Recursive Descent** Can formulate top-down parsing analogously to NFAs. Consider parsing S="ID*ID \dashv " with a grammar from last time: parse (A, S): p : e '⊢' """Assuming A is a nonterminal and S = $c_1c_2...c_n$ is a string, return e:tinteger k such that A can derive the prefix string $c_1 \dots c_k$ of S.""" | e '/' t Choose production 'A: $\alpha_1\alpha_2\cdots\alpha_m$ ' for A (nondeterministically) | e '*' t k = 0for x in $\alpha_1, \alpha_2, \cdots, \alpha_m$: t : ID if x is a terminal: if x == c_{k+1} : k += 1 else: GIVE UP else: k += parse (x, $c_{k+1} \cdots c_n$) return k • Assume that the grammar contains one production for the start symbol: p: $\gamma \dashv$. • We'll say that a call to parse returns a value if some set of choices for productions (the blue step) would return a value (just like NFA). • Then if parse(p, S) returns a value, S must be in the language. Last modified: Wed Feb 10 15:01:01 2010 CS164: Lecture #7 3

Example

Consider parsing S="ID*ID \dashv " with a grammar from last time:

 $p : e' \dashv A$ failing path through the program: e : t parse(p, S): | e '/' t Choose $p : e ' \dashv ':$ | e '*' t parse(e, S): t : ID Choose e : t: parse(t, S): choose t : ID: check S[1] == ID; OK, return 1 (= k_3 ; adde \mathbf{k}_i means "the return 1 (and add to k_1) variable k in the Check S[2] == S[k_1 +1] == '-'': GIVE call to parse that is nested *i* deep." Outermost k is k₁.

Example

Consider parsing S="ID*ID \dashv " with a grammar from last time:

 $p : e' \dashv$ A successful path through the program: e : t parse(p, S): Choose p : e ' \dashv ': | e '/' t parse(e, S): | e '*' t Choose e : e '*' t: t : ID parse(e, S): choose e : t: parse(t, S): choose t : ID: check S[1] == II \mathbf{k}_i means "the return 1 (so $k_2 += 1$) variable k in the check $S[k_2] == '*'; OK, k_2 =$ call to parse that $parse(t, S_3): \# S_3 == "ID$ is nested *i* deep." choose t : ID: Outermost k is check $S_3[k_3+1] == S_3[1]$ k_3 +=1; return 1 (so k_2 k_1 . Likewise for return 3 S. Check $S[k_1+1] == S[4] == '-1'$: OK k_1 +=1; return 4

Making a Deterministic Algorithm

- If we had an infinite supply of processors, could just spawn new ones at each "Choose" line.
- Some would give up, some loop forever, but on correct programs, at least one processor would get through.
- To do this for real (say with one processor), need to keep track of all possibilities systematically.
- This is the idea behind Earley's algorithm:
 - Handles any context-free grammar.
 - Finds all parses of any string.
 - Runs in $O(N^3)$ time for ambiguous grammars, $O(N^2)$ time for "non-deterministic grammars", or O(N) time for deterministic grammars (such as accepted by Bison).

 \bullet First, reformulate to use recursion instead of looping. Assume the string $S=c_1\cdots c_n$ is fixed.

```
parse (A: \alpha \bullet \beta, s, k):
"""Assumes A: \alpha\beta is a production in the grammar,
    0 <= s <= k <= n, and \alpha can produce the string c_{s+1} \cdots c_k.
     Returns integer j such that \beta can produce c_{k+1} \cdots c_i."""
if \beta is empty:
    return k
Assume \beta has the form x\delta
if x is a terminal:
    if x == c_{k+1}:
          return parse(A: \alpha x \bullet \delta, s, k+1)
    else:
          GIVE UP
 else:
     Choose production 'x: \kappa' for x (nondeterministically)
    j = parse(x: \bullet \kappa, k, k)
    return parse (A: \alpha x \bullet \delta, s, j)
```

• Now do all possible choices that result in such a way as to avoid redundant work ("nondeterministic memoization").

```
Last modified: Wed Feb 10 15:01:01 2010 C5164: Lecture #7 5 Last modified: Wed Feb 10 15:01:01 2010 C5164: Lecture #7 6
```

Chart Parsing

- Idea is to build up a table (known as a *chart*) of all calls to parse that have been made.
- Only one entry in chart for each distinct triple of arguments (A: $\alpha \bullet \beta$, s, k).
- We'll organize table in columns numbered by the k parameter, so that column k represents all calls that are looking at c_{k+1} in the input.
- Each column contains entries with the other two parameters: [A: $\alpha \bullet \beta$, s], which is called an *item*.
- The columns, therefore, are *item sets*.

Example

			Grammar	Input String
р	:	e '⊣'		- I + I H
е	:	sI	e '+' e	
S	:	·_·		

0	-	1 ^I		2	+	3	I
a.p: ●e '⊢', 0							
b.e: ●e '+' e,	0 f.e:	s•I, 0	h.e: e	•'+' e,	0 j.e:	●s I,	3
c.e: ●s I, O						•, 3	
d.s: •'-', 0					<i>l.</i> e:	s •I, 3	3
4	\dashv	5					
m.e: s I•, 3	<i>p.</i> p:	e '⊣' •	, 0				
n.e: e '+' e●,	0						
<i>o</i> .p: e●'⊣', 0							

Example, completed

• Last slide showed only those items that survive and get used. Algorithm actually computes dead ends as well (unlettered, in red).

 $a p: \bullet e' \dashv ', 0 e.s: '-' \bullet, 0 g.e: s I \bullet, 0 i.e: e'+' \bullet e, 0$

- 1 ^I 2

b.e: •e '+' e, 0 f.e: $s \in I$, 0 h.e: $e \in I$ '+' e, 0 j.e: •s I, 3

Adding	Semantic	Actions
--------	----------	---------

- Pretty much like recursive descent. The call parse(A: $\alpha \bullet \beta$, s, k) can return, in addition to j, the semantic value of the A that matches characters $c_{s+1} \cdots c_j$.
- This value is actually computed during calls of the form $parse(A: \alpha' \bullet, s, k)$ (i.e., where the β part is empty).
- Assume that we have attached these values to the nonterminals in α , so that they are available when computing the value for A.

Last modified: Wed Feb 10 15:01:01 2010	CS164: Lecture #7 9	Last modified: Wed Feb 10 15:01:01 2010	CS164: Lecture #7 10

Ι

3

k.s: •, 3

l.e: s ●I, 3 s: •'-', 3

e: •e '+' e. 3

Ambiguity

- Ambiguity only important here when computing semantic actions.
- Rather than being satisfied with a single path through the chart, we look at *all* paths.
- And we attach the set of possible results of $parse(Y: \bullet \kappa, s, k)$ to the nonterminal Y in the algorithm.

0

c.e: ●s I, 0

d.s: •'-', 0

n.e: e '+' e●, 0 o.p: e●'⊣', 0 e: e ●'+' e, 3

4 [→] **5** m.e: s I•, 3 | p.p: e [,]→[,] •, 0

s: ●, 0 e: s ●I, 0