Lecture 7: General and Bottom-Up Parsing

Administrivia

e Homework 4 now out. It includes a component on Project #1, which
you must do as a team.

e If you don't have a team, I'll assign one today. At the moment, T
know of only one person without a team.

e There are a number of people who have a team, but who have not
turned in one or more homeworks—not a good ideal These are easy
points, and you must avoid falling behind.

Last modified: Wed Feb 10 15:01:01 2010 CS164: Lecture #7 1

A Little Notation

Here and in lectures to follow, we'll often have to refer to general
productions or derivations. In these, we'll use various alphabets to mean
various things:

e Capital roman letters are nonterminals (A4, B,...).
e Lower-case roman letters are terminals (or tokens, characters, etc.)

e Lower-case greek letters are sequences of zero or more terminal
and nonterminal symbols, such as appear in sentential forms or on
the right sides of productions (o, 3, .. .).

e Subscripts on lower-case greek letters indicate individual symbols
within them, so @ = oy, ..., and each «; is a single terminal or
honterminal.

For example,
e A : a might describe the productione: e ’+’ t,

e B = aAv = afiy might describe the derivation steps e =e '+’ t
=e '+’ ID(aise ’+’; Aist; Bise; and 7 is empty.)

Last modified: Wed Feb 10 15:01:01 2010 CS164: Lecture #7 2

Fixing Recursive Descent

e Can formulate top-down parsing analogously to NFAs.

parse (A, S):
"""Assuming A is a nonterminal and S = c¢j¢...¢, 1s a string, return
integer k such that A can derive the prefix string c¢;...c; of S."""
Choose production ‘A: ajas---«a,’° for A (nondeterministically)
k=20
for x in oy, a9, -+, Qu:
if x 1s a terminal:
if x == Cpyq:
k += 1
else:
GIVE UP
else:
k += parse (X, Cpi1---Cp)
return k

e Assume that the grammar contains one production for the start
symbol: p: ~ .

e We'll say that a call fo parse returns a value if some set of choices
for productions (the blue step) would return a value (just like NFA).

e Then if parse(p, S) returns a value, S must be in the language.
Last modified: Wed Feb 10 15:01:01 2010 CS164: Lecture #7 3

Example

Consider parsing S="ID+*IDH" with a grammar from last time:

p e’
e : t
| e’/ t
| e 7%’ ¢t
t : ID

Last modified: Wed Feb 10 15:01:01 2010 CS164: Lecture #7 4

Example

Consider parsing S="ID+*IDH" with a grammar from last time:

) A failing path through the program:

P e
e : t
parse(p, S):
e /7t Choose p : e
e 7%t parse(e, S):
t : ID Choose e : t:
parse(t, S):
choose t : ID:
check S[1] == ID; OK, so kg += 1;
return 1 (= k3; added to k)
k; means “the return 1 (and add to ki)
variable k in the Check S[2] == S[k;+1] == ’+4’: GIVE UP (S[2] == ’%’)

call to parse that
is nested ¢ deep.”
Outermost k is
k.

Last modified: Wed Feb 10 15:01:01 2010 CS164: Lecture #7 4

Example

Consider parsing S="ID+*IDH" with a grammar from last time:

p:e P A successful path through the program:
e : t parse(p, 8):
| e 7/’ t Choose p : e ’H’:
| e "% ¢ parse(e, S):
Choose e : e %’ t:
t 1D parse(e, S):

choose e : t:
parse(t, S):
choose t : ID:
check S[1] == ID; 0K, so return 1

k; mMmeans the return 1 (so ky += 1)

variable k in the

check S[ky] == ’*’; 0K, ko += 1
call fo parse that parse(t, Si): # S == "ID 4"
is hested i deep." choose t : ID:
Outermost k is check S5[ks+1] == S3[1] == ID; OK
k;. Likewise for ks+=1; return 1 (so ky += 1)
g return 3
Check S[k;+1] == S[4] == ’+H’: OK

ki +=1; return 4

Last modified: Wed Feb 10 15:01:01 2010 CS164: Lecture #7 4

Making a Deterministic Algorithm

e If we had an infinite supply of processors, could just spawn new ones
at each "Choose" line.

e Some would give up, some loop forever, but on correct programs, at
least one processor would get through.

e To do this for real (say with one processor), need to keep track of
all possibilities systematically.

e This is the idea behind Earley's algorithm:

- Handles any context-free grammar.
- Finds all parses of any string.

- Runs in O(N?) time for ambiguous grammars, O(N?) time for “non-
deterministic grammars”, or O(N) time for deterministic gram-
mars (such as accepted by Bison).

Last modified: Wed Feb 10 15:01:01 2010 CS164: Lecture #7 B

Earley's Algorithm: I

e First, reformulate to use recursion instead of looping. Assume the
string S =c;--- ¢, is fixed.

parse (A: ae (3, s, k):
"""Assumes A: af is a production in the grammar,
0 <= s <= k <= n, and « can produce the string cg;1---c.
Returns integer j such that (3 can produce cpyq---¢;."""
if § is empty:
return k
Assume (has the form xz¢
if x is a terminal:
if © == cpaq:
return parse(A: ared, s, k+1)
else:
GIVE UP
else:
Choose production ‘x: kK’ for x (nondeterministically)
j = parse(x: ex, k, k)
return parse (A: ared, s, j)

e Now do all possible choices that result in such a way as to avoid
redundant work ("nondeterministic memoization").

Last modified: Wed Feb 10 15:01:01 2010 CS164: Lecture #7 6

Chart Parsing

e Idea is to build up a table (known as a chart) of all calls to parse
that have been made.

e Only one entry in chart for each distinct triple of arguments (A: a e j3, s, k).

e We'll organize table in columns numbered by the k& parameter, so
that column k represents all calls that are looking at c¢;.; in the
input.

e Each column contains entries with the other two parameters: [A: « e 3,s],
which is called an item.

e The columns, therefore, are item sets.

Last modified: Wed Feb 10 15:01:01 2010 CS164: Lecture #7 7

Example

Grammar Input String
p:e’H -1+ 14
e:sI | e’+ e
s : =7 |

Chart. Headings are values of k and c;+; (raised symbols).

0 - 1 L 2 * 3
ap: e *1’, 0 e.s: ’-’e, O0|ge: s Ie, O ie: e ’+’ ee,
be: ee ’+’ e, O|fe: sel, 0 |he: e '+’ e, O|je: os I, 3
ce: es I, O ks: e, 3
ds: e-=",0 le: s oI, 3
4 3 5
me: s le, 3 p.p: € 1’ e, 0
ne: e '+’ ee, O
o.p: ee’4’, 0

Last modified: Wed Feb 10 15:01:01 2010 CS164: Lecture #7 8

Example, completed

e Last slide showed only those items that survive and get used. Algo-
rithm actually computes dead ends as well (unlettered, in red).

0 - 1 L 2 * 3 I
ap: e 17, 0 |es: ’-’e, Ojge: s Te, O ie: e '+’ ee, O
be: ee ’+’ e, O|fe: sel, 0 |he: e '+’ e, O|je: os I, 3
ce: es I, O ks: e, 3
ds: e-=",0 le: s eI, 3
sie, 0 s:e-', 3
e:sel,O e.ec +¢e,3
4 3 5
me: s Je, 3 p.p: e 1’ o, 0
ne: e ’+’ ee, 0
o.p: ee’1’ 0
e.ee+ e, 3

Last modified: Wed Feb 10 15:01:01 2010 CS164: Lecture #7 9

Adding Semantic Actions

e Pretty much like recursive descent. The call parse(A: ae 3, s, k)
can return, in addition to j, the semantic value of the A that matches
characters c,.; - - - c;.

e This value is actually computed during calls of the form parse(A: d'e,
s, k) (i.e., where the (3 part is empty).

e Assume that we have attached these values to the nonterminals in
«, so that they are available when computing the value for A.

Last modified: Wed Feb 10 15:01:01 2010 CS164: Lecture #7 10

Ambiguity

e Ambiguity only important here when computing semantic actions.

e Rather than being satisfied with a single path through the chart, we
look at all paths.

e And we attach the set of possible results of parse(Y: ex, s, k)
to the nonterminal Y in the algorithm.

Last modified: Wed Feb 10 15:01:01 2010 CS164: Lecture #7 11

	Lecture 7: General and Bottom-Up Parsing
	A Little Notation
	Fixing Recursive Descent
	Example
	Making a Deterministic Algorithm
	Earley's Algorithm: I
	Chart Parsing
	Example
	Example, completed
	Adding Semantic Actions
	Ambiguity

