Bottom-Up Parsing

Lecture 8
(From slides by 6. Necula & R. Bodik)

2/12/09 Prof. Hilfinger CS164 Lecture 8 1

Administrivia

+ Test I during class on 10 March.
* Notes updated (at last)

2/12/09 Prof. Hilfinger CS164 Lecture 8

©

Bottom-Up Parsing

+ We've been looking at general context-free parsing.

+ It comes at a price, measured in overheads, so in
practice, we design programming languages to be
parsed by less general but faster means, like top-down
recursive descent.

Deterministic bottom-up parsing is more general than
top-down parsing, and just as efficient.

* Most common form is LR parsing
- L means that tokens are read left to right
- R means that it constructs a rightmost derivation

2/12/09 Prof. Hilfinger CS164 Lecture 8 3

An Introductory Example

* LR parsers don't need left-factored grammars
and can also handle left-recursive grammars

Consider the following grammar:
E—-E+(E)|int
- Why is this not LL(1)?

+ Consider the string: int + (int)+ (int)

2/12/09 Prof. Hilfinger CS164 Lecture 8 4

The Idea

* LR parsing reduces a string to the start
symbol by inverting productions:

sent < input string of terminals
while sent = S:

- Identify first B in sent such that A — B isa
productionand S =* a Ay — a By =sent

- Replace p by A in sent (so o A y becomes new sent)
+ Such a B's are called handles

2/12/09 Prof. Hilfinger CS164 Lecture 8 5

A Bottom-up Parse in Detail (1)

int + (int) + (int)

int + (int) + (int)

2/12/09 Prof. Hilfinger CS164 Lecture 8 6

A Bottom-up Parse in Detail (2)

int + (int) + (int)
E + (int) + (int)

(handles in red)

A Bottom-up Parse in Detail (3)

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)

E E
| |
int + (int) + (int)

2/12/09 Prof. Hilfinger CS164 Lecture 8 8

A Bottom-up Parse in Detail (5)

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)

E + (int) E
E+(E)
E E E
| [\
inf + (int) + (int)
2/12/09 Prof. Hilfinger CS164 Lecture 8 10

E
\
inf + (int) + (int)
2/12/09 Prof. Hilfinger CS164 Lecture 8 7
A Bottom-up Parse in Detail (4)
int + (int) + (int)
E + (int) + (int)
E + (E) + (int)
E + (int) E
E E
\ |
inf + (int) + (int)
2/12/09 Prof. Hilfinger CS164 Lecture 8 9
A Bottom-up Parse in Detail (6)
int + (int) + (int) E
E + (int) + (int)
E + (E) + (int)
E + (int)
E
E+(E)
E
A reverse rightmost E E E
derivation | | |
inf + (int) + (int)

2/12/09 Prof. Hilfinger CS164 Lecture 8

Where Do Reductions Happen

Because an LR parser produces a reverse
rightmost derivation:
- If apy is step of a bottom-up parse with handle a.ff
- And the next reduction is by A—
- Theny is a string of terminals !

.. Because a Ay — ofly is a step in a right-most
derivation

Intuition: We make decisions about what
reduction to use after seeing all symbols in
handle, rather than before (as for LL(1))

2/12/09 Prof. Hilfinger CS164 Lecture 8 12

Notation

+ Idea: Split the string into two substrings

- Right substring (a string of terminals) is as yet
unexamined by parser

- Left substring has terminals and non-terminals
+ The dividing point is marked by a |
- The I is not part of the string

- Marks end of next potential handle

+ Initially, all input is unexamined: Ix;x, . . . X,

2/12/09 Prof. Hilfinger CS164 Lecture 8 13

Shift-Reduce Parsing

- Bottom-up parsing uses only two kinds of actions:
Shift: Move | one place to the right, shifting a
terminal to the left string
E+(int) = E+(int1)

Reduce: Apply an inverse production at the handle.

If E — E+ (E)isaproduction, then
E+(E+(E)1) =E+E")

2/12/09 Prof. Hilfinger CS164 Lecture 8 14

Shift-Reduce Example

I int + (int) + (int)$ shift

int + (int)+ (int

Shift-Reduce Example

I int + (int) + (int)$ shift
int | + (int) + (int)$ red.E — int

int + (int)+ (int

Shift-Reduce Example

I int + (int) + (int)$ shift
int | + (int) + (int)$ red.E — int
El+(int) + (int)$ shift 3 times

int + (int)+ (int

Shift-Reduce Example

I int + (int) + (int)$ shift

int | + (int) + (int)$ red. E — int
El+(int) + (int)$ shift 3 times
E+(int 1)+ (int)$ red E—int

int + (int)+ (int

Shift-Reduce Example

I int + (int) + (int)$
int | + (int) + (in)$
E |+ (int) + (int)$
E+ (int 1)+ (int)$
E+(E1)+(@inD)$

shift

red. E — int

shift 3 times
red. E — int

shift

int + (

int)+ |

int

Shift-Reduce Example

I int + (int) + (int)$
int | + (int) + (in)$
E |+ (int) + (int)$
E+ (int 1)+ (int)$
E+(E1)+(@inD)$
E+(E) I+ (int)$

shift

red. E — int
shift 3 times
red. E — int
shift

red. E — E + (E)

E

/

int + (

E

int)+ |

int

Shift-Reduce Example

I int + (int) + (int)$
int | + (int) + (in)$
E |+ (int) + (int)$
E+ (int 1)+ (int)$
E+(E1)+(@inD)$
E+(E) I+ (int)$
El+(int)$

shift

red. E — int
shift 3 times
red. E — int
shift

red. E — E + (E)
shift 3 times

E E

/ \

int + (int)+ (

int

Shift-Reduce Example

I int + (int) + (int)$
int | + (int) + (inH)$
E | + (int) + (inH)$
E+(int 1)+ (inH)$
E+(E1)+(@inD$
E+ (E) I+ (int)$

E 1+ (int)$
E+(int1)$

shift

red. E — int
shift 3 times
red. E — int
shift

red.E — E + (E)
shift 3 times
red. E — int

E

/

int + (

\

int)+ |

int

Shift-Reduce Example

| int + (int) + (int)$ shift
int | + (int) + (int)$ red. E — int

E | + (int) + (inH)$
E+(int 1)+ (inH)$
E+(E1)+(@inD$
E+ (E) I+ (int)$
E 1+ (int)$
E+(int1)$
E+(EN$

shift 3 times
red. E — int
shift

red.E — E + (E)
shift 3 times
red. E — int
shift

Shift-Reduce Example

| int + (int) + (int)$ shift
int | + (int) + (int)$ red. E — int

E | + (int) + (inH)$
E+(int 1)+ (inH)$
E+(E1)+(@inD$
E+ (E) I+ (int)$
E 1+ (int)$
E+(int1)$
E+(EN$
E+(E)I$

shift 3 times
red. E — int
shift

red. E — E + (E)
shift 3 times
red. E — int
shift

red. E— E + (E)

E

/

int +

(

E

\

int)+ |

Shift-Reduce Example

| int + (int) + (int)$ shift E
int | + (int) + (int)$ red. E — int

E |+ (int) + (int)$ shift 3 times
E+(int1)+(int)$ red E—int
E+(EI)+(int)$ shift E
E+ (E) I+ (int)$ red. E— E + (E)
E 1+ (int)$ shift 3 times
E+ (int1)$ red. E — int
E+(E1$ shift
E+(E)I$ red E~E+(E) E £
EI$ accept / \ ‘
int + (int)+ (int)

The Stack

Left string can be implemented as a stack
- Top of the stack is the |

+ Shift pushes a terminal on the stack

+ Reduce pops 0 or more symbols from the stack

(production rhs) and pushes a non-terminal on
the stack (production |hs)

2/12/09 Prof. Hilfinger CS164 Lecture 8 26

Key Issue: When to Shift or Reduce?

- Decide based on the left string (the stack)

+ Idea: use a finite automaton (DFA) to decide
when to shift or reduce

- The DFA input is the stack up to potential handle
- DFA alphabeft consists of terminals and nonterminals
- DFA recognizes complete handles

+ We run the DFA on the stack and we examine
the resulting state X and the token tok after |

- If X has a transition labeled tok then shift
- If X is labeled with "A — B on tok" then reduce

2/12/09 Prof. Hilfinger CS164 Lecture 8 27

LR(1) Parsing. An Example

E E — int
on$,+

F-G-5@)

I int + (int) + (int)$ shift
int 1+ (int) + (int)$ E — int
E 1+ (int) + (int)$ shift(x3)
E+(int1)+(nt)$ E - int

Representing the DFA

+ Parsers represent the DFA as a 2D table

- As for table-driven lexical analysis

* Lines correspond to DFA states
+ Columns correspond to terminals and non-

terminals

* In classical tfreatments, columns are split into:

- Those for terminals: action table
- Those for non-terminals: goto table

2/12/09 Prof. Hilfinger CS164 Lecture 8 29

T .
ons E/ | int E+(E1)+(int)$ shift
E—-int E+(E)1+(int)$ E—E+E)
ESE® on)+ El+(int)$ shift (x3)
on$,+ int E+(int1)$ E - int
E+(E1N$ shift
E+(E)1$ E — E+(E)
E Ei$ accept
O~ - @
on), +
Representing the DFA. Example
+ The table for a fragment of our DFA:
int . () $ E
3 s4
4 |s5 s6
5 PE~ int PE ~ int
6 s7
7 e~ E+(E) e~ E+(E)
E—~E+(E)on$,+
2/12/09 Prof. Hilfinger CS164 Lecture 8 30

The LR Parsing Algorithm

+ After a shift or reduce action we rerun the
DFA on the entire stack

- This is wasteful, since most of the work is
repeated

- So record, for each stack element, state of
the DFA after that state

* LR parser maintains a stack
('symy, state;) ... (sym,, state,)
state, is the final state of the DFA on sym, ... sym,

2/12/09 Prof. Hilfinger CS164 Lecture 8 31

Parsing Contexts

- Consider the state describing the situation at the 1in
the stack E + (lint)+ (int)
+ Context:
- Weare looking foranE — E+(* E)
+ Have have seen E + (from the right-hand side
- Weare also looking for E — © int orE — * E+(E)
+ Have seen nothing from the right-hand side
+ One DFA state describes a set of such contexts
+ (Traditionally, use * to show where the | is.)

2/12/09 Prof. Hilfinger CS164 Lecture 8 33

The LR Parsing Algorithm

Let I = ww,..w,$ be initial input
Letj=1
Let DFA state O be the start state
Let stack = (dummy, O)
repeat
case table[top_state(stack), I[j]] of
shift ki push (I[j], k) j+=1
reduce X — a:
pop lal pairs,
push (X, table[top_state(stack), X])
accept: halt normally
error: halt and report error

2/12/09 Prof. Hilfinger CS164 Lecture 8 32

LR(1) Items

+ An LR(1) item is a pair:
X —=af,a
- X — ap is a production
- ais a terminal (the lookahead terminal)
- LR(1) means 1 lookahead terminal

+ [X — a*B, a] describes a context of the parser
- We are trying to find an X followed by an a, and
- We have o already on top of the stack
- Thus we need to see next a prefix derived from fa

2/12/09 Prof. Hilfinger CS164 Lecture 8 34

Convention

+ We add to our grammar a fresh new start
symbol S and a production S — E
- Where E is the old start symbol
- No need to do this if E had only one production

+ The initial parsing context contains:
S-+E$

- Trying to find an S as a string derived from E$
- The stack is empty

2/12/09 Prof. Hilfinger CS164 Lecture 8 35

Constructing the Parsing DFA. Example.

1 .
S I ey e

E — *E+(E), $/+] on$,+

RLLX2
2 AE *
S—E*$ (
E— E*+(E), $/+ E — E+(*E), $/+[4]
accept E E— -E+(E),)/+
on E— inf,)/+
@ E — E+(E*), $/+ int m
E — Eo+(E),)/+ E— inte,)/+] E—int

d on), +
21200 ANG SO ONee e iinger CS164 Lecture § 36

LR Parsing Tables. Notes

+ Parsing tables (i.e. the DFA) can be
constructed automatically for a CFG

+ But we still need to understand the
construction to work with parser generators
- E.g., they report errors in terms of sets of items

+ What kind of errors can we expect?

2/12/09 Prof. Hilfinger CS164 Lecture § 37

Shift/Reduce Conflicts

+ If a DFA state contains both
[X - a-aB, b] and [Y -y, a]

+ Then on input "a" we could either
- Shift into state [X — aa*B, b], or
- Reduce with Y -y

+ This is called a shift-reduce conflict

2/12/09 Prof. Hilfinger CS164 Lecture 8 38

Shift/Reduce Conflicts

+ Typically due to ambiguities in the grammar
+ Classic example: the dangling else
S— if EthenS | if EthenSelse S | OTHER
+ Will have DFA state containing
[S — if E then Se, else]
[S— if Ethen S* else S, $]
- If else follows then we can shift or reduce

2/12/09 Prof. Hilfinger CS164 Lecture 8 39

More Shift/Reduce Conflicts

+ Consider the ambiguous grammar
E—-E+E|E*E|int
*+ We will have the states containing
[E—E*-E, +] [E—-E*Ee, +]
[E—-<E+E, +] =F [E—E-+E, +]

* Again we have a shift/reduce on input +
- We need to reduce (* binds more tightly than +)
- Solution: declare the precedence of * and +

2/12/09 Prof. Hilfinger CS164 Lecture § 40

More Shift/Reduce Conflicts

+ In bison declare precedence and associativity
of terminal symbols:
%left +
%left *

* Precedence of a rule = that of its last terminal
- See bison manual for ways to override this default

- Resolve shift/reduce conflict with a shift if:
- input terminal has higher precedence than the rule
- the precedences are the same and right associative

2/12/09 Prof. Hilfinger CS164 Lecture § 41

Using Precedence to Solve S/R Conflicts

* Back to our example:
[E—E*«E,+] [E —E * Ee, +]
[E—>+E+E +] = [E—E++E,+]

+ Will choose reduce because precedence of
rule E — E * E is higher than of terminal +

2/12/09 Prof. Hilfinger CS164 Lecture 8 42

Using Precedence to Solve S/R Conflicts

+ Same grammar as before
E—-E+E|E*E|int
+ We will also have the states
[E—~E++E,+] [E—~E+Ee,+]
[E—><E+E+] =E [E—E++E+]

* Now we also have a shift/reduce on input +

- We choose reduce because E — E + E and + have
the same precedence and + is left-associative

2/12/09 Prof. Hilfinger CS164 Lecture 8 43

Using Precedence to Solve S/R Conflicts

+ Back to our dangling else example
[S — if E then Se, else]
[S — if Ethen S® else S, x]
+ Can eliminate conflict by declaring else with
higher precedence than then
* However, best to avoid overuse of precedence
declarations or you'll end with unexpected
parse trees

2/12/09 Prof. Hilfinger CS164 Lecture 8 44

Reduce/Reduce Conflicts

+ If a DFA state contains both
[X = ae,aland [Y - B°, a]
- Then on input "a" we don't know which
production to reduce

 This is called a reduce/reduce conflict

2/12/09 Prof. Hilfinger CS164 Lecture § 45

Reduce/Reduce Conflicts

+ Usually due to gross ambiguity in the grammar
- Example: a sequence of identifiers
S—¢|id|ids

+ There are two parse trees for the string id
S—id
S—idS—id
How does this confuse the parser?

2/12/09 Prof. Hilfinger CS164 Lecture § 46

More on Reduce/Reduce Conflicts

- Consider the states [S—ide., $]
[S—=+5S, $] [S—ideS, $]
[S—-. $] =id [S—-, $]
[S—-<id, $] [S—=-+id, $]
[S—-idS, $] [S—=-idS, $]

- Reduce/reduce conflict on input $

S —=S—-id

S —=S5S—-idS—id
+ Better rewrite the grammar: s —¢ |idS

2/12/09 Prof. Hilfinger CS164 Lecture § 47

Relation to Bison

+ Bison builds this kind of machine.

+ However, for efficiency concerns, collapses
many of the states together.

+ Causes some additional conflicts, but not
many.

+ The machines discussed here are LR(1)
engines. Bison's optimized versions are
LALR(1) engines.

2/12/09 Prof. Hilfinger CS164 Lecture 8 48

A Hierarchy of Grammar Classes

Unambiguous Grammars

Ambiguous
Grammars

\

2/12/09 Prof. Hilfinger CS164 Lecture 8

From Andrew Appel,
“Modern Compiler
Implementation in Java"

Notes on Parsing

+ Parsing
- A simple parser: LL(1), recursive descent
- A more powerful parser: LR(1)
- An efficiency hack: LALR(1)
- We use LALR(1) parser generators

- Earley's algorithm provides a complete algorithm
for parsing context-free languages.

2/12/09 Prof. Hilfinger CS164 Lecture 8 50

