
Lecture 8: Deterministic Bottom-Up Parsing

• (From slides by G. Necula & R. Bodik)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 1

Avoiding nondeterministic choice: LR

• We’ve been looking at general context-free parsing.

• It comes at a price, measured in overheads, so in practice, we de-
sign programming languages to be parsed by less general but faster
means, like top-down recursive descent.

• Deterministic bottom-up parsing is more general than top-down pars-
ing, and just as efficient.

• Most common form is LR parsing

– L means that tokens are read left to right

– R means that it constructs a rightmost derivation

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 2

An Introductory Example

• LR parsers don’t need left-factored grammars and can also handle
left-recursive grammars

• Consider the following grammar:

E : E + (E) | int

(Why is this not LL(1)?)

• Consider the string: int + (int) + (int) .

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 3

The Idea

• LR parsing reduces a string to the start symbol by inverting produc-
tions. In the following, sent is a sentential form that starts as the
input and is reduced to the start symbol, S:

 sent = input string of terminals

while sent 6= S:

 Identify first β in sent such that A : β is a production

 and S ∗
=⇒ αAγ ⇒ αβγ = sent.

 Replace β by A in sent (so that αAγ becomes new sent).

• Such αβ ’s are called handles.

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 4

A Bottom-up Parse in Detail (1)

Grammar:

E : E + (E) | int

int + (int) + (int)

intint + (int) + (int)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 5

A Bottom-up Parse in Detail (2)

Grammar:

E : E + (E) | int

int + (int) + (int)

E + (int) + (int)

(handles in red)

E

int + (int) + (int)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 6

A Bottom-up Parse in Detail (3)

Grammar:

E : E + (E) | int

int + (int) + (int)

E + (int) + (int)

E + (E) + (int)

E E

int + (int) + (int)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 7

A Bottom-up Parse in Detail (4)

Grammar:

E : E + (E) | int

int + (int) + (int)

E + (int) + (int)

E + (E) + (int)

E + (int)

E

E E

int + (int) + (int)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 8

A Bottom-up Parse in Detail (5)

Grammar:

E : E + (E) | int

int + (int) + (int)

E + (int) + (int)

E + (E) + (int)

E + (int)

E + (E)

E

E E E

int + (int) + (int)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 9

A Bottom-up Parse in Detail (6)

Grammar:

E : E + (E) | int

A reverse rightmost
derivation:

int + (int) + (int)

E + (int) + (int)

E + (E) + (int)

E + (int)

E + (E)

E

E

E

E E E

int + (int) + (int)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 10

Where Do Reductions Happen?

Because an LR parser produces a reverse rightmost derivation:

• If αβγ is one step of a bottom-up parse with handle αβ

• And the next reduction is by A : β,

• Then γ must be a string of terminals,

• Because αAγ ⇒ αβγ is a step in a rightmost derivation

Intuition: We make decisions about what reduction to use after seeing
all symbols in the handle, rather after seeing only the first (as for
LL(1)).

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 11

Notation

• Idea: Split the input string into two substrings

– Right substring (a string of terminals) is as-yet unprocessed by
parser

– Left substring has terminals and nonterminals

– (In examples, we’ll mark the dividing point with |.)

– The dividing point marks the end of the next potential handle.

– Initially, all input is unexamined: |x1x2 · · · xn

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 12

Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of actions:

• Shift: Move | one place to the right, shifting a terminal to the left
string.

– For example,

E + (| int) −→ E + (int |)

• Reduce: Apply an inverse production at the handle.

– For example, if E : E + (E) is a production, then we might reduce:

E + (E + (E) |) −→ E +(E |)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 13

Accepting a String

• The process ends when we reduce all the input to the start symbol.

• For technical convenience, however, we usually add a new start sym-
bol and a hidden production to handle the end-of-file:

S’ : S ⊣

• Having done this, we can now stop parsing and accept the string
whenever we reduce the entire input to

S | ⊣

without bothering to do the final shift and reduce.

• This will be the convention from now on.

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 14

Shift-Reduce Example (1)

Sent. Form Actions

| int + (int) + (int) ⊣ shift

Grammar:

E : E + (E) | int

int + (int) + (int)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 15

Shift-Reduce Example (2)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int

Grammar:

E : E + (E) | int

E

int + (int) + (int)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 16

Shift-Reduce Example (3)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int
E | + (int) + (int) ⊣ shift 3 times

Grammar:

E : E + (E) | int

E

int + (int) + (int)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 17

Shift-Reduce Example (4)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int
E | + (int) + (int) ⊣ shift 3 times
E + (int |) + (int) ⊣ reduce by E: int

Grammar:

E : E + (E) | int

E E

int + (int) + (int)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 18

Shift-Reduce Example (5)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int
E | + (int) + (int) ⊣ shift 3 times
E + (int |) + (int) ⊣ reduce by E: int
E + (E |) + (int) ⊣ shift

Grammar:

E : E + (E) | int

E E

int + (int) + (int)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 19

Shift-Reduce Example (6)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int
E | + (int) + (int) ⊣ shift 3 times
E + (int |) + (int) ⊣ reduce by E: int
E + (E |) + (int) ⊣ shift
E + (E) | + (int) ⊣ reduce by E: E+(E)

Grammar:

E : E + (E) | int

E

E E

int + (int) + (int)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 20

Shift-Reduce Example (7)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int
E | + (int) + (int) ⊣ shift 3 times
E + (int |) + (int) ⊣ reduce by E: int
E + (E |) + (int) ⊣ shift
E + (E) | + (int) ⊣ reduce by E: E+(E)
E | + (int) ⊣ shift 3 times

Grammar:

E : E + (E) | int

E

E E

int + (int) + (int)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 21

Shift-Reduce Example (8)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int
E | + (int) + (int) ⊣ shift 3 times
E + (int |) + (int) ⊣ reduce by E: int
E + (E |) + (int) ⊣ shift
E + (E) | + (int) ⊣ reduce by E: E+(E)
E | + (int) ⊣ shift 3 times
E + (int |) ⊣ reduce by E: int

Grammar:

E : E + (E) | int

E

E E E

int + (int) + (int)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 22

Shift-Reduce Example (9)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int
E | + (int) + (int) ⊣ shift 3 times
E + (int |) + (int) ⊣ reduce by E: int
E + (E |) + (int) ⊣ shift
E + (E) | + (int) ⊣ reduce by E: E+(E)
E | + (int) ⊣ shift 3 times
E + (int |) ⊣ reduce by E: int
E + (E |) ⊣ shift

Grammar:

E : E + (E) | int

E

E E E

int + (int) + (int)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 23

Shift-Reduce Example (10)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int
E | + (int) + (int) ⊣ shift 3 times
E + (int |) + (int) ⊣ reduce by E: int
E + (E |) + (int) ⊣ shift
E + (E) | + (int) ⊣ reduce by E: E+(E)
E | + (int) ⊣ shift 3 times
E + (int |) ⊣ reduce by E: int
E + (E |) ⊣ shift
E + (E) |⊣ reduce by E: E+(E)

Grammar:

E : E + (E) | int

E

E

E E E

int + (int) + (int)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 24

Shift-Reduce Example (11)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int
E | + (int) + (int) ⊣ shift 3 times
E + (int |) + (int) ⊣ reduce by E: int
E + (E |) + (int) ⊣ shift
E + (E) | + (int) ⊣ reduce by E: E+(E)
E | + (int) ⊣ shift 3 times
E + (int |) ⊣ reduce by E: int
E + (E |) ⊣ shift
E + (E) |⊣ reduce by E: E+(E)
E |⊣ accept

Grammar:

E : E + (E) | int

E

E

E E E

int + (int) + (int)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 25

The Parsing Stack

• The left string (left of the |) can be implemented as a stack:

– Top of the stack is just left of the |.

– Shift pushes a terminal on the stack.

– Reduce pops 0 or more symbols from the stack (corresponding to
the production’s right-hand side) and pushes a nonterminal on the
stack (the production’s left-hand side).

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 26

Key Issue: When to Shift or Reduce?

• Decide based on the left string (“the stack”) and some of the re-
maining input (lookahead tokens)—typically one token at most.

• Idea: use a DFA to decide when to shift or reduce:

– DFA alphabet consists of terminals and nonterminals.

– The DFA input is the stack up to potential handle.

– DFA recognizes complete handles.

– In addition, the final states are labeled with particular produc-
tions that might apply, given the possible lookahead symbols.

• We run the DFA on the stack and we examine the resulting state, X

and the lookahead token τ after |.

– If X has a transition labeled τ then shift.

– If X is labeled with “A : β on τ ,” then reduce.

• So we scan the input from Left to right, producing a (reverse)
Rightmost derivation, using 1 symbol of lookahead: giving LR(1) pars-
ing.

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 27

LR(1) Parsing. An Example

0
int

1
E: int

on ’⊣’, ’+’

2
+

3
(

4

E

accept
on ’⊣’

7
)

6 5

E: E + (E)
on ’⊣’, ’+’

E: int
on ’)’, ’+’

E int

8
(

9

+ int

10
)

11
E: E+(E)
on ’)’, ’+’

+ E

|0 int + (int) + (int) ⊣ shift
int |1 + (int) + (int) ⊣ red. by E: int
E |2 + (int) + (int) ⊣ shift 3 times
E + (int |5) + (int) ⊣ red. by E: int
E + (E |6) + (int) ⊣ shift
E + (E) |7 + (int) ⊣ red. by E: E+(E)
E |2 + (int) ⊣ shift 3 times
E + (int |5) ⊣ red. by E: int
E + (E |6) ⊣ shift
E + (E) |7 ⊣ red. by E: E+(E)
E |2 ⊣ accept

(Subscripts on |show the states
that the DFA reaches by scanning
the left string.)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 28

LR(1) Parsing. Another Example

0
int

1
E: int

on ’⊣’, ’+’

2
+

3
(

4

E

accept
on ’⊣’

7
)

6 5

E: E + (E)
on ’⊣’, ’+’

E: int
on ’), ’+’

E int

8
(

9

+ int

10
)

11
E: E+(E)
on ’)’, ’+’

+ E

|0 int + (int + (int + (int))) ⊣ shift
int |1 + (int + (int + (int)))⊣ red. by E: int
E |2 + (int) + (int + (int))) ⊣ shift 3 times
E + (int |5) + (int + (int))) ⊣ red. by E: int
E + (E |6) + (int + (int))) ⊣ shift

... ...
E + (E + (E + (int|5))) ⊣ red. by E: int
E + (E + (E + (E|10))) ⊣ shift
E + (E + (E + (E) |11)) ⊣ red. by E: E + (E)
E + (E + (E |10)) ⊣ shift
E + (E + (E)|11) ⊣ red. by E: E + (E)
E + (E|6) ⊣ shift
E + (E)|7 ⊣ red. by E: E + (E)
E |2 ⊣ accept

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 29

Representing the DFA

• Parsers represent the DFA as a 2D table, as for table-driven lexical
analysis

• Lines correspond to DFA states

• Columns correspond to terminals and nonterminals

• Classical treatments (like Aho, et al) split the columns are split into:

– Those for terminals: the action table.

– Those for nonterminals: the goto table.

The goto table contains only shifts, but conceptually, the tables are
very much alike as far as the DFA is concerned.

• The classical division has some advantages when it comes to table
compression.

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 30

Representing the DFA. Example

Here’s the table for a fragment of our DFA:

3
(

4

6 5

E int

E: int
on ’)’, ’+’

7

)

E: E+(E)
on ’⊣’, ’+’

int + () ⊣ E

. . .

3 s4

4 s5 s6

5 rE: int rE: int

6 s7

7 rE: E+(E) rE: E+(E)

. . .

Legend: ‘sN ’ means “shift (or go to) state N .”
‘rP ’ means “reduce using production P .”
blank entries indicate errors.

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 31

A Little Optimization

• After a shift or reduce action we rerun the DFA on the entire stack.

• This is wasteful, since most of the work is repeated, so

• Memoize: instead of putting terminal and nonterminal symbols on
the stack, put the DFA states you get to after reading those sym-
bols.

• For example, when we’ve reached this point:

E + (E + (E + (int|5))) ⊣

store the part to the left of |as

0 2 3 4 6 8 9 10 8 9 5

• And don’t throw any of these away until you reduce them.

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 32

The Actual LR Parsing Algorithm

Let I = w1w2 . . . wn be initial input

Let j = 1

Let stack = < 0 >

repeat

case table[top_state(stack), I[j]] of

sk:

push k on the stack; j += 1

rX: α:

pop len(α) symbols from stack

push j on stack, where table[top_state(stack), X] is sj.

accept:

return normally

error:

return parsing error indication

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 33

Parsing Contexts

• Consider the state describing the situation at the | in the stack
E + (| int)+(int), which tells us

– We are looking to reduce E: E + (E), having already seen E + (from
the right-hand side.

– Therefore, we expect that the rest of the input starts with
something that will eventually reduce to E:

E: int or E: E+(E)

after which we expect to find a ‘)’,

– but we have as yet seen nothing from the right-hand sides of
either of these two possible productions.

• One DFA state captures a set of such contexts in the form of a set
of LR(1) items, like this:

[E: E + (• E), ...] [E: • int, ’+’] (why?)

[E: • int, ’)’] [E: • E+(E), ’+’] (why?)

[E: • E+(E), ’)’]

• (Traditionally, use • in items to show where the | is.)

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 34

LR(1) Items

• An LR(1) item is a pair:

X: α•β, a

– X: αβ is a production.

– a is a terminal symbol (an expected lookahead).

• It says we are trying to find an X followed by a.

• and that we have already accumulated α on top of the parsing stack.

• Therefore, we need to see next a prefix of something derived from
βa.

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 35

Constructing the Parsing DFA

• The idea is to borrow from Earley’s algorithm (where we’ve already
seen this notation!).

• We throw away a lot of the information that Earley’s algorithm
keeps around (notably where in the input each current item got in-
troduced), because when we have a handle, there will only be one
possible reduction to take based on what we’ve seen so far.

• This allows the set of possible item sets to be finite.

• Each state in the DFA has an item set that is derived from what
Earley’s algorithm would do, but collapsed because of the informa-
tion we throw away.

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 36

Constructing the Parsing DFA: Partial Example

0
S: •E, ⊣
E: •E+(E), ⊣/+
E: •int, ⊣/+

1
E: int •, ⊣/+

E: int
on ’⊣’, ’+’int

2
S: E •, ⊣
E: E •+ (E), ⊣/+

accept
on ’⊣’

E
3E: E+•(E), ⊣/+

+

4E: E+(•E), ⊣/+
E: •int,)/+
E: •E + (E),)/+

(

5

E: int •,)/+
E: int

on ’)’, ’+’

int

6
E: E+(E•), ⊣/+
E: E•+ (E),)/+

E

)

• • •

+

• • •

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 37

LR Parsing Tables. Notes

• We really want to construct parsing tables (i.e. the DFA) from CFGs
automatically, since this construction is tedious.

• But still good to understand the construction to work with parser
generators, which report errors in terms of sets of items.

• What kind of errors can we expect?

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 38

Shift/Reduce Conflicts

• If a DFA state contains both [X: α•aβ, b] and [Y: γ, a], then we have
two choices when the parser gets into that state at the | and the
next input symbol is a:

– Shift into the state containing [X: αa•β, b], or

– Reduce with Y: γ.

• This is called a shift-reduce conflict.

• Often due to ambiguities in the grammar. Classic example: the dan-
gling else

S: "if" E "then" S | "if" E "then" S "else" S | . . .

• This grammar gives rise to a DFA state containing

[S: "if" E "then" S•, "else"] and [S: "if" E "then" S•"else" S, . . .]

• So if “else” is next, we can shift or reduce.

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 39

More Shift/Reduce Conflicts

• Consider the ambiguous grammar

E : E + E | E * E | int

• We will have the states containing

[E: E * •E, *] [E: E * E •, *]
E

=⇒
[E: •E + E, *] [E: E •+ E, *]

.

• Again we have a shift/reduce on input ’*’ (in the item set on the
right).

• We probably want to shift (’*’ is usually supposed to bind more
tightly than ’+’)

• Solution: provide extra information (the precedence of ’*’ and ’+’)
that allows the parser generator to decide what to do.

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 40

Using Precedence in Bison

• In Bison, you can declare precedence and associativity of both ter-
minal symbols and rules,

• For terminal symbols (tokens), there are precedence declarations,
listed from lowest to highest precedence:

%left ’+’

%left ’*’

%right "**"

Symbols on each such line have the same precedence.

• For a rule, precedence = that of its last terminal (Can override with
%prec if needed, cf. the Bison manual).

• Now, we resolve shift/reduce conflict with a shift if:

– The next input token has higher precedence than the rule, or

– The next input token has the same precedence as the rule and
the relevent precedence declaration was %right.

and otherwise, we choose to reduce the rule.

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 41

Example of Using Precedence to Solve S/R Conflict (1)

• Assuming we’ve declared

%left ’+’

%left ’*’

the rule E: E + E will have precedence 1 (left-associative) and the
rule E: E * E will have precedence 2.

• So, when the parser confronts the choice in state 6 w/next token
’*’,

5 E: E + •E, */+
E: •E + E, */+
E: •E * E, */+

etc.

6E: E + E•, */+
E: E •+ E, */+
E: E •* E, */+

E

it will choose to shift because the ‘*’ has higher precedence than
the rule E + E.

• On the other hand, with input symbol ’+’, it will choose to reduce,
because the input token then has the same precedence as the rule
to be reduced, and is left-associative.

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 42

Example of Using Precedence to Solve S/R Conflict (2)

• Back to our dangling else example. We’ll have the state

10 S: "if" E "then" S •, "else"
S: "if" E "then" S•"else" S, "else"

etc.

• Can eliminate conflict by declaring the token “else” to have higher
precedence than “then” (and thus, than the first rule above).

• HOWEVER: best to limit use of precedence to these standard ex-
amples (expressions, dangling elses). If you simply throw them in
because you have a conflict you don’t understand, you’re like to end
up with unexpected parse trees or syntax errors.

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 43

Reduce/Reduce Conflicts

• The lookahead symbols in LR(1) items are only considered for reduc-
tions in items that end in ‘•’.

• If a DFA state contains both

[X: α•, a] and [Y: β•, a]

then on input ‘a’ we don’t know which production to reduce.

• Such reduce/reduce conflicts are often due to a gross ambiguity in
the grammar.

• Example: defining a sequence of identifiers with

S: ǫ | id | id S

• There are two parse trees for the string id:

S ⇒id or S ⇒id S ⇒S.

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 44

Reduce/Reduce Conflicts in DFA

• For this example, you’ll get states:

0 S’: •S, ⊣
S: •, ⊣
S: •id, ⊣
S: •id S, ⊣
S’: S •, ⊣

1S: id •, ⊣
S: id •S, ⊣
S: •, ⊣
S: id S •, ⊣
S: •id, ⊣
S: •id S, ⊣

id

• Reduce/reduce conflict on input ‘⊣’.

• Better rewrite the grammar: S: ǫ | id S.

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 45

Relation to Bison

• Bison builds this kind of machine.

• However, for efficiency concerns, collapses many of the states to-
gether, namely those that differ only in lookahead sets, but other-
wise have identical sets of items. Result is called an LALR(1) parser
(as opposed to LR(1)).

• Causes some additional conflicts, but not these are rare.

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 46

A Hierarchy of Grammar Classes

Unambiguous Grammars Ambiguous

Grammars

LR(k)

LR(1)

LALR(1)

SLR

LR(0)LL(0)

LL(k)

LL(1)

From Andrew
Appel, “Mod-
ern Compiler
Implementa-
tion in Java”

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 47

Summary

• Parsing provides a means of tying translation actions to syntax clearly.

• A simple parser: LL(1), recursive descent

• A more powerful parser: LR(1)

• An efficiency hack: LALR(1), as in Bison.

• Earley’s algorithm provides a complete algorithm for parsing all context-
free languages.

• We can get the same effect in Bison by other means (the %glr-parser

option, for Generalized LR), as seen in one of the examples from lec-
ture #5.

Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 48

	Lecture 8: Deterministic Bottom-Up Parsing
	Avoiding nondeterministic choice: LR
	An Introductory Example
	The Idea
	A Bottom-up Parse in Detail (1)
	A Bottom-up Parse in Detail (2)
	A Bottom-up Parse in Detail (3)
	A Bottom-up Parse in Detail (4)
	A Bottom-up Parse in Detail (5)
	A Bottom-up Parse in Detail (6)
	Where Do Reductions Happen?
	Notation
	Shift-Reduce Parsing
	Accepting a String
	Shift-Reduce Example (1)
	Shift-Reduce Example (2)
	Shift-Reduce Example (3)
	Shift-Reduce Example (4)
	Shift-Reduce Example (5)
	Shift-Reduce Example (6)
	Shift-Reduce Example (7)
	Shift-Reduce Example (8)
	Shift-Reduce Example (9)
	Shift-Reduce Example (10)
	Shift-Reduce Example (11)
	The Parsing Stack
	Key Issue: When to Shift or Reduce?
	LR(1) Parsing. An Example
	LR(1) Parsing. Another Example
	Representing the DFA
	Representing the DFA. Example
	A Little Optimization
	The Actual LR Parsing Algorithm
	Parsing Contexts
	LR(1) Items
	Constructing the Parsing DFA
	Constructing the Parsing DFA: Partial Example
	LR Parsing Tables. Notes
	Shift/Reduce Conflicts
	More Shift/Reduce Conflicts
	Using Precedence in Bison
	Example of Using Precedence to Solve S/R Conflict (1)
	Example of Using Precedence to Solve S/R Conflict (2)
	Reduce/Reduce Conflicts
	Reduce/Reduce Conflicts in DFA
	Relation to Bison
	A Hierarchy of Grammar Classes
	Summary

