Lecture 10: General and Bottom-Up Parsing

Job Opportunity. Professor Keltner of the Psychology Department is
looking for a web developer to help with a moodle system (CMS). There
are options for a stipend, and if the project is completed on schedule
the developer's work will be shown on a TEDx presentation. See Piazzza
for more details.

Last modified: Wed Feb 16 10:38:52 2011 CS164: Lecture #10 1

A Little Notation

Here and in lectures to follow, we'll often have to refer to general
productions or derivations. In these, we'll use various alphabets to mean
various things:

e Capital roman letters are nonterminals (A, B,...).
e Lower-case roman letters are terminals (or tokens, characters, etc.)

e Lower-case greek letters are sequences of zero or more terminal
and nonterminal symbols, such as appear in sentential forms or on
the right sides of productions (o, 3,...).

e Subscripts on lower-case greek letters indicate individual symbols
within them, so @ = aj«, ..., and each «; is a single terminal or
nonterminal.

For example,
e A: a might describe the productione: e ’+’ t,

e B = oAy = afy might describe the derivation steps e =e ’+’ t
=e '+’ ID(aise ’+’; Aist; Bise; and 7y is empty.)

Last modified: Wed Feb 16 10:38:52 2011 CS164: Lecture #10 2

Fixing Recursive Descent

e First, let's define an impractical but simple implementation of a top-
down parsing routine.

e For nonterminal A and string S=cic; .. .c,, we'll define parse(A, S) to
return the length of a valid substring derivable from A.

e That is, parse(A, cics ... ¢,) = k, where

C1C ... CLCpy1Cky2 ... Cp

*

A=

Last modified: Wed Feb 16 10:38:52 2011 CS164: Lecture #10 3

Abstract body of parse(A,S)

e Can formulate top-down parsing analogously o NFAs.
parse (A, S):

"""Assuming A is a nonterminal and S = c¢i¢p...¢, is a string, return
integer k such that A can derive the prefix string c¢;...c; of S."""

Choose production ‘A: ajas---ay,’ for A (nondeterministically)
k=0
for x in a1, @y, -+, Qu:
if x is a terminal:
if x == ¢4
k +=1
else:
GIVE UP
else:
k += parse (X, Cpi1---Cp)
return k

e Assume that the grammar contains one production for the start
symbol: p: v .

e We'll say that a call to parse returns a value if some set of choices
for productions (the blue step) would return a value (just like NFA).

e Then if parse(p, S) returns a value, S must be in the language.
Last modified: Wed Feb 16 10:38:52 2011 CS164: Lecture #10 4

Example

Consider parsing S="ID+ID-" with a grammar from last time:
p : e+ Afsutiegssftih paith ddiraughpithe pregram:

e : t parse(p, S)
| e ?/° parscehgdse : e ’4"

| Choosegc
e 'x’ ¢
parsec(ho,OSS ‘e : e R

D Chooﬁ"frse (e, S)

parse(hdos ‘e t:

choosaeLz te (‘t

check OO[Sléj Ip;. 0K, so kg += 1;
" return gheck (S[; ad?ﬁd BR k%o return 1
k; means the return 1 (tand add, %o k
. . return (so
variable k in the Check S[2] 5= Sfkyril s, q{Ivg B (S[2] == ’x")
call to parse that parse(t, Sp): # Sd —= WID
is nested i deep.” choose t : ID:
Outermost k is check S3[ks+1] == S3[1] == ID; OK
k;. Likewise for kg+=1; return 1 (so ky += 1)
S return 3
Check S[k;+1] == S[4] == "+’: OK
k; +=1; return 4

Last modified: Wed Feb 16 10:38:52 2011 C5164: Lecture #10 5

Making a Deterministic Algorithm

e If we had an infinite supply of processors, could just spawn new ones
at each "Choose" line.

e Some would give up, some loop forever, but on correct programs, at
least one processor would get through.

e To do this for real (say with one processor), need to keep track of
all possibilities systematically.

e This is the idea behind Earley's algorithm:

- Handles any context-free grammar.
- Finds all parses of any string.

- Can recoghize or reject strings in O(N?) time for ambiguous gram-
mars, O(N?) time for “"nondeterministic grammars"”, or O(N) time
for deterministic grammars (such as accepted by Bison).

Last modified: Wed Feb 16 10:38:52 2011 CS164: Lecture #10 6

Earley's Algorithm: I

e First, reformulate to use recursion instead of looping. Assume the
string S =¢;--- ¢, is fixed.
e Redefine parse:
parse (A: aef3, s, k):
"""Assumes A: af is a production in the grammar,

0 <= s <= k <= n, and « can produce the string ce .- -¢;.
Returns integer j such that (3 can produce cjyi---cj."""

e Or diagrammatically, parse returns an integer j such that:

Cl"'C.S‘CS+1”'C]\“Ck‘+1”'cjcj+1”'c
D N S

* *

a— =

Last modified: Wed Feb 16 10:38:52 2011 CS164: Lecture #10 7

Earley's Algorithm: IT

parse (A: aef3, s, k):
"""Assumes A: af is a production in the grammar,
0 <= s <= k <= n, and « can produce the string c..---¢;.
Returns integer j such that 3 can produce cjip---¢;."""
if B is empty:
return k
Assume (3 has the form z0
if z is a terminal:
if x == c¢py1:
return parse(A: ared, s, k+1)
else:
GIVE UP
else:
Choose production ‘x: k’ for x (nondeterministically)
j = parse(x: ek, k, k)
return parse (A: axed, s, j)

e Now do all possible choices that result in such a way as to avoid
redundant work (“nondeterministic memoization").

Last modified: Wed Feb 16 10:38:52 2011 CS164: Lecture #10 8

Chart Parsing Example

e Idea is to build up a table (known as a chart) of all calls to parse Grammar Input String
that have been made. p:e’d - I+ 1
e Only one entry in chart for each distinct triple of arguments (A: « e 3, s, k). © s | e’+’ e

) |

e We'll organize table in columns numbered by the k& parameter, so
that column k represents all calls that are looking at ;.1 in the Headings are values of k and ¢, (raised symbols).
input. :

- I + I
e Each column contains entries with the other two parameters: [A: « e 3, 5], ' O’—P : 1 2 3
which are called items. .p: ee , 0 Jes:

’-’e, O|ge: s Ie, O ie: e '+’ ee, O
.e: ee '+’ e, O|fe: sel, O |he: e @+’ e, O|je: os I, 3
e The columns, therefore, are item sets. :es I, 0 ks: e, 3

:e’=7 0 Le: s oI, 3

4
: s Je, 3
e '+ eco, O
e’ 0

Last modified: Wed Feb 16 10:38:52 2011

CS164: Lecture #10 9 Last modified: Wed Feb 16 10:38:52 2011

CS164: Lecture #10 10

Example, completed Adding Semantic Actions
e Last slide showed only those items that survive and get used. Algo-

e Pretty much like recursive descent. The call parse(A: ae 3, s, k)
rithm actually computes dead ends as well (unlettered, in red).

can return, in addition to j, the semantic value of the A that matches
characters ¢,y - - c;.
- I +

0 1 2 e This value is actually computed during calls of the form parse(A: o'e,
e’1, 0 Jes: ’~’e, Olge: s Ie, 0 .e: s, k) (i.e., where the 3 part is empty).
f.e: s I, Olhe: e @ '+’ ¢, Ofje:

p:ee =, 0 : e Assume that we have attached these values to the nonterminals in
’ ' «a, so that they are available when computing the value for A.

Last modified: Wed Feb 16 10:38:52 2011 CS164: Lecture #10 11

Last modified: Wed Feb 16 10:38:52 2011 CS164: Lecture #10 12

Ambiguity

e Ambiguity only important here when computing semantic actions.

e Rather than being satisfied with a single path through the chart, we
look at all paths.

e And we attach the set of possible results of parse(Y: ex, s, k)
to the nonterminal Y in the algorithm.

Last modified: Wed Feb 16 10:38:52 2011 CS164: Lecture #10 13

	Lecture 10: General and Bottom-Up Parsing
	A Little Notation
	Fixing Recursive Descent
	Abstract body of parse(A,S)
	Example
	Making a Deterministic Algorithm
	Earley's Algorithm: I
	Earley's Algorithm: II
	Chart Parsing
	Example
	Example, completed
	Adding Semantic Actions
	Ambiguity

