
Lecture 34: Registers, Functions, Parameters

Last modified: Sun Apr 24 16:11:52 2011 CS164: Lecture #34 1

Three-Address Code to ia32

• The problem is that in reality, the ia32 architecture has very few
registers, and example from last lecture used registers profligately.

• Register allocation is the general term for assigning virtual regis-
ters to real registers or memory locations.

• When we run out of real registers, we spill values into memory loca-
tions reserved for them.

• We keep a register or two around as compiler temporaries for cases
where the instruction set doesn’t let us just combine operands di-
rectly.

Last modified: Sun Apr 24 16:11:52 2011 CS164: Lecture #34 2

A Simple Strategy: Local Register Allocation

• It’s convenient to handle register allocation within basic blocks—
sequences of code with one entry point at the top and (at most) one
branch at the end.

• At the end of each such block, spill any registers needed.

• To do this efficiently, need to know when a register is dead—that
is, when its value is no longer needed.

• We’ll talk about how to compute that in a later lecture. Let’s assume
we know it for now.

• Let’s also assume that each virtual register representing a local
variable or intermediate result has a memory location suitable for
spilling.

Last modified: Sun Apr 24 16:11:52 2011 CS164: Lecture #34 3

Simple Algorithm for Local Register Allocation

• We execute the following for each three-address instruction in a
basic block (in turn).

• Initially, the set availReg contains all usable physical registers.

Allocate registers to an instruction x := y op z

[Adopted from Aho, Sethi, Ullman]

regAlloc(x := y op z):

if x has an assigned register already or dies here:

return

if y is a virtual register and dies here:

reassign y’s physical register to x

elif availReg is not empty:

remove a register from availReg and assign to x

elif op requires a register:

spill another virtual register (which could be y or z),

and reassign its physical register to x

else:

just leave x in memory

Last modified: Sun Apr 24 16:11:52 2011 CS164: Lecture #34 4

Function Prologue and Epilogue for the ia32

• Consider a function that needs K bytes of local variables and other
compiler temporary storage for expression evaluation.

• We’ll consider the case where we keep a frame pointer.

• Overall, the code for a function, F , looks like this:

F:

pushl %ebp # Save dynamic link (caller’s frame pointer)

movl %esp,%ebp # Set new frame pointer

subl K,%esp # Reserve space for locals

code for body of function, leaving value in %eax

leave # Sets %ebp to 0(%ebp), popping old frame pointer

ret # Pop return address and return

Last modified: Sun Apr 24 16:11:52 2011 CS164: Lecture #34 5

Code Generation for Local Variables

• Local variables are stored on the stack (thus not at fixed location).

• One possibility: access relative to the stack pointer, but

– Sometimes convenient for stack pointer to change during execu-
tion of of function, sometimes by unknown amounts.

– Debuggers, unwinders, and stack tracers would like simple way to
compute stack-frame boundaries.

• Solution: use frame pointer, which is constant over execution of
function.

• For simple language, use fact that parameter i is at location
frame pointer + K1(i + K2). If parameters are 32-bit integers (or
pointers) on the ia32, K1 = 4 and K2 = 2 [why?].

• Local variables other than parameters are at negative offsets from
the frame pointer on the ia32.

Last modified: Sun Apr 24 16:11:52 2011 CS164: Lecture #34 6

Accessing Non-Local Variables

• In program on left, how does f3 access x1?

• Let’s suppose that functions pass static links as the first parameter
of their callees.

• The static link passed to f3 will be f2’s frame pointer.

def f1 (x1):

def f2 (x2):

def f3 (x3):

... x1 ...

...

f3 (12)

...

f2 (9)

To access x1:
movl 8(%ebp),%ebx # Fetch FP for f2
movl 8(%ebx),%ebx # Fetch FP for f1
movl 12(%ebx),%eax # Fetch x1

When f2 calls f3:
compute regular parameters
pushl %ebp # Pass f2’s frame to f3
call f3

• We’ll say a function is at nesting level 0 if it is at the outer level,
and at level k + 1 if it is most immediately enclosed inside a level-k
function. Likewise, the variables, parameters, and code in a level-k
function are themselves at level k+1 (enclosed in a level-k function).

• In general, for code at nesting level n to access a variable at nesting
level m ≤ n, perform n − m loads of static links.

Last modified: Sun Apr 24 16:11:52 2011 CS164: Lecture #34 7

Accessing Non-Local Variables (II)

• The GNU convention for passing the static link is slightly different:
it is passed in register ecx, making it easy to ignore if not needed.
We’ll use that in what follows.

def f1 (x1):

def f2 (x2):

def f3 (x3):

... x1 ...

...

f3 (12)

...

f2 (9)

Immediately after prologue:
pushl %ecx # Save static link at -4 off %ebp.

To access x1:
movl -4(%ebp),%ebx # Fetch FP for f2
movl -4(%ebx),%ebx # Fetch FP for f1
movl 8(%ebx),%eax # Fetch x1

When f2 calls f3:
compute parameters
movl %ebp, %ecx # Pass f2’s frame to f3
call f3

Last modified: Sun Apr 24 16:11:52 2011 CS164: Lecture #34 8

Calling Function-Valued Variables and Parameters

• As we’ve seen, a function value consists of a code address and a
static link (let’s assume code address comes first).

• So, in project 3, when we need the value of a function itself:

def caller(f):

f(42)

we create an object containing the type pointer for the function
type of f, and the code pointer and static link for f, and pass a
pointer to this object.

• Then the call f(42) gets translated to

pushl $42

movl 8(%ebp), %eax # Get parameter f

movl 8(%eax), %ecx # Fetch static link from f

movl 4(%eax), %eax # Get code address for f

call *%eax # GNU assembler for call to address in eax

Last modified: Sun Apr 24 16:11:52 2011 CS164: Lecture #34 9

Static Links for Calling Known Functions

• For a call F (. . .) to a fixed, known function F , we could use the same
strategy as for function-values variables:

– Create a closure for F containing address of F ’s code and value
of its static link.

– Call F using the same code sequence as on previous slide.

• But can do better. Functions and their nesting levels are known.

• In code that is at nesting level n, to call a function at known nesting
level m ≤ n, get correct static link in register R with:

– movl %ebp,R

– Do ‘movl -4(R),R’ n − m + 1 times.

(assuming we save static links at -4 off our frame pointer).

• When calling outer-level functions, it doesn’t matter what you use
as the static link.

Last modified: Sun Apr 24 16:11:52 2011 CS164: Lecture #34 10

Passing Static Links to Known Functions: Example

def f1 (x1):

def f2 (x2):

def f3 (x3):

... f2 (9) ...

...

f3 (12)

f2 (10) # (recursively)

...

To call f2(9) (in f3):
pushl $9

movl -
4(%ebp),%ebx # Fetch FP for f2

movl -
4(%ebx),%ecx # Fetch FP for f1, and pass it
call f2
addl $4,%esp

To call f3(12) (in f2):
pushl $12
movll %ebp, %ecx # f2’s FP is static link
call f3
addl $4,%ebp

To call f2(10) (in f2):
pushl $10

movl -
4(%ebp),%ecx # Pass down same static link
call f2
addl $4,%ebp

Last modified: Sun Apr 24 16:11:52 2011 CS164: Lecture #34 11

Variations

• Nothing forces us to pass static links this way.

• GCC on the ia32, for example, uses register %ecx to pass the static
link (which the callee may then have to save).

• This makes the common case—calling an outer-level function—faster.

• In fact, for its own reasons, GCC passes an offset from the frame
pointer as the static link (I’m not sure why). Clearly, it doesn’t mat-
ter as long as the compiler is careful to use the static link consis-
tently.

Last modified: Sun Apr 24 16:11:52 2011 CS164: Lecture #34 12

A Note on Pushing

• Don’t really need to push and pop the stack as I’ve been doing.

• Instead, when allocating local variables, etc., on the stack, leave
sufficient extra space on top of the stack to hold any parameter
list in the function.

• Eg., to translate

def f(x):

g(g(x+2))

• We could either get the code on the left (pushing and popping) or
that on the right (ignoring static links):

f: movl 8(%ebp),%eax f: subl $4,%esp

addl $2,%eax movl 8(%ebp),%eax

pushl %eax addl $2,%eax

call g movl %eax,0(%esp)

addl $4,%esp call g

pushl %eax movl %eax,0(%esp)

call g call g

addl $4,%esp

. . . and you can continue to use the depressed stack pointer for ar-
guments on the right.

Last modified: Sun Apr 24 16:11:52 2011 CS164: Lecture #34 13

Parameter Passing Semantics: Value vs. Reference

• So far, our examples have dealt only with value parameters, which
are the only kind found in C, Java, and Python

Ignorant comments from numerous textbook authors, blog-
gers, and slovenly hackers notwithstanding [End Rant].

• Pushing a parameter’s value on the stack creates a copy that essen-
tially acts as a local variable of the called function.

• C++ (and Pascal) have reference parameters, where assignments to
the formal are assignments to the actual.

• Implementation of reference parameters is simple:

– Push the address of the argument, not its value, and

– To fetch from or store to the parameter, do an extra indirection.

Last modified: Sun Apr 24 16:11:52 2011 CS164: Lecture #34 14

Copy-in, Copy-out Parameters

• Some languages, such as Fortran and Ada, have a variation on this:
copy-in, copy-out. Like call by value, but the final value of the param-
eter is copied back to the original location of the actual parameter
after function returns.

– “Original location” because of cases like f(A[k]), where k might
change during execution of f. In that case, we want the final
value of the parameter copied back to A[k0], where k0 is the
original value of k before the call.

– Question: can you give an example where call by reference and
copy-in, copy-out give different results?

Last modified: Sun Apr 24 16:11:52 2011 CS164: Lecture #34 15

Parameter Passing Semantics: Call by Name

• Algol 60’s definition says that the effect of a call P (E) is as if the
body of P were substituted for the call (dynamically, so that recur-
sion works) and E were substituted for the corresponding formal
parameter in the body (changing names to avoid clashes).

• It’s a simple description that, for simple cases, is just like call by
reference:

procedure F(x) F(aVar);

integer x; becomes
begin aVar := 42;

x := 42;

end F;

• But the (unintended?) consequences were “interesting”.

Last modified: Sun Apr 24 16:11:52 2011 CS164: Lecture #34 16

Call By Name: Jensen’s Device

• Consider:

procedure DoIt (i, L, U, x, x0, E)

integer i, L, U; real x, x0, E;

begin

x := x0;

for i := L step 1 until U do

x := E;

end DoIt;

• To set y to the sum of the values in array A[1:N],

integer k;

DoIt(k, 1, N, y, 0.0, y+A[k]);

• To set z to the Nth harmonic number:

DoIt(k, 1, N, z, 0.0, 1.0/k);

• Now how are we going to make this work?

Last modified: Sun Apr 24 16:11:52 2011 CS164: Lecture #34 17

Call By Name: Implementation

• Basic idea: Convert call-by-name parameters into parameterless func-
tions (traditionally called thunks.)

• To allow assignment, these functions can return the addresses of
their results.

• So the call

DoIt(k, 1, N, y, 0.0, y+A[k]);

becomes something like (please pardon highly illegal notation):

integer t1; real t2, t3, t4;

t2 := 1.0; t3 := 0.0;

DoIt(lambda: &k, lambda: &t2, lambda: &N, lambda: &y,

lambda: &t3, lambda: (t4 := y+A[k], &t4));

• Later languages have abandoned this particular parameter-passing
mode.

Last modified: Sun Apr 24 16:11:52 2011 CS164: Lecture #34 18

	Lecture 34: Registers, Functions, Parameters
	Three-Address Code to ia32
	A Simple Strategy: Local Register Allocation
	Simple Algorithm for Local Register Allocation
	Function Prologue and Epilogue for the ia32
	Code Generation for Local Variables
	Accessing Non-Local Variables
	Accessing Non-Local Variables (II)
	Calling Function-Valued Variables and Parameters
	Static Links for Calling Known Functions
	Passing Static Links to Known Functions: Example
	Variations
	A Note on Pushing
	Parameter Passing Semantics: Value vs. Reference
	Copy-in, Copy-out Parameters
	Parameter Passing Semantics: Call by Name
	Call By Name: Jensen's Device
	Call By Name: Implementation

