Lecture 37: Global Optimization

[Adapted from notes by R. Bodik and 6. Necula]
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Topics

e Global optimization refers to program optimizations that encompass
multiple basic blocks in a function.

e (T have used the term galactic optimization to refer to going beyond
function boundaries, but it hasn't caught on; we call it just interpro-
cedural optimization.)

e Since we can't use the usual assumptions about basic blocks, global
optimization requires global flow analysis to see where values can
come from and get used.

e The overall question is: When can local optimizations (from the last
lecture) be applied across multiple basic blocks?
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A Simple Example: Copy Propagation

X := 3
B >0
Y :=Z + W Y :=0
A =2 x X
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A Simple Example: Copy Propagation

A

=2 x X

e Without other assignments to X, it is valid to treat the red parts as
if they were in the same basic block.
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A Simple Example: Copy Propagation

A

;=2 % 3

e Without other assignments to X, it is valid to treat the red parts as
if they were in the same basic block.
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A Simple Example: Copy Propagation

X := 3
B >0
Y :(=7Z + W Y :=0
X =4
A =2 x X

e Without other assignments to X, it is valid to treat the red parts as
if they were in the same basic block.

e But as soon as one other block on the path to the bottom block
assigns to X, we can no longer do so.

e It is correct to apply copy propagation to a variable x from an as-
signment statement A: x := ... to agiven use of x in statement B
only if the last assignment to x in every path from to B is A.
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Issues

e This correctness condition is not trivial to check

o "All paths" includes paths around loops and through branches of con-
ditionals

e Checking the condition requires global analysis: an analysis of the
entire control-flow graph for one method body.

e This is typical for optimizations that depend on some property P at
a particular point in program execution.

e Indeed, property P is typically undecidable, so program optimization
is all about making conservative (but not cowardly) approximations
of P.
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Undecidability of Program Properties

e Rice's "theorem:" Most interesting dynamic properties of a program
are undecidable. E.q.,
- Does the program halt on all (some) inputs? (Halting Problem)
- Is the result of a function F always positive? (Consider

def F(x):
H(x)
return 1

Result is positive iff H halts.)

e Syntactic properties are typically decidable (e.g., "How many occur-
rences of x are there?").

e Theorem does not apply in absence of loops
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Conservative Program Analyses

e If a certain optimization requires P to be true, then

- If we know that P is definitely true, we can apply the optimiza-
tion
- If we don't know whether P is true, we simply don't do the op-

timization. Since optimizations are not supposed to change the
meaning of a program, this is safe.

e In other words, in analyzing a program for properties like P, it is
always correct (albeit non-optimal) to say "don't know."

e The trick is to say it as seldom as possible.

e Global dataflow analysis is a standard technique for solving problems
with these characteristics.

Last modified: Wed Apr 20 22:55:29 2011 CS164: Lecture #37 6



Example: Global Constant Propagation

e Global constant propagation is just the restriction of copy propaga-
tion to constants.

e In this example, we'll consider doing it for a single variable (X).

e At every program point (i.e., before or after any instruction), we
associate one of the following values with X

Value Interpretation

# (aka bottom) No value has reached here (yet)

c (For c a constant) X definitely has the value c.

* (aka top) Don't know what, if any, constant value X has.
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Example of Result of Constant Propagation

X=* —
X :=3
X=3—
X:j}\
X=3 >Y'—Z+W Y :=0 ~—X=3
X:3—>X:;4 - < X =3
X=4 —» :
\ s
A =2 x X - X=*
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Using Analysis Results

e Given global constant information, it is easy fo perform the opti-
mization:

- If the point immediately before a statement using x tells us that
x = c, then replace x with c.

- Otherwise, leave it alone (the conservative option).

e But how do we compute these propertiesx = ...?
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Transfer Functions

e Basic Idea: Express the analysis of a complicated program as a com-
bination of simple rules relating the change in information between
adjacent statements

e That is, we "push” or transfer information from one statement to
the next.

e For each statement s, we end up with information about the value
of x immediately before and after s:

Cin(X,s) = value of x before s
Cout(X,s) = value of x after s

e Here, the "values of x" we use come from an abstract domain, con-
taining the values we care about—#, *, k—values computed statically
by our analysis.

e For the constant propagation problem, we'll compute Cout from Cin,
and we'll get Cin from the Couts of predecessor statements, Cout(X,

p1),...,Cout(X,p,).
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Constant Propagation: Rule 1

D1 D2 D3 N
XX\X*

S

DPn

X

X =*

?

If Cout(X, p;) = * for some i, then Cin(X, s) = *
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Constant Propagation: Rule 2

P1 D2 D3 Dn
Xzc Xz? X=d X =2
\\ /.

S

If Cout(X, p;) = ¢ and Cout(X, p;) = d with constants ¢ # d,
then Cin(X, s) = *
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Constant Propagation: Rule 3

- Pn
:C X # X—C X =zH

N\

S

If Cout(X, p;) = ¢ for some i and
Cout(X, p;) = c or Cout(X, p,;) = # for dll 7,
then Cin(X,s) = c
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Constant Propagation: Rule 4

X#X#X#

N

Pn
Xz #

S

— X:=#

If Cout(X, p;) = # forall j, then Cin(X, s) = #
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Constant Propagation: Computing Cout

e Rules 1-4 relate the out of one statement to the in of the succes-
sor statements, thus propagating information forward across CFG
edges.

e Now we need local rules relating the in and out of a single statement
to propagate information across statements.
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Constant Propagation: Rule 5

Cout(X,s)=#if Cin(X,s) = #

The value #’ means "so far, no value of X gets here, because the we
don't (yet) know that this statement ever gets executed.”

Last modified: Wed Apr 20 22:55:29 2011 CS164: Lecture #37 16



Constant Propagation: Rule 6

Cout(X, X :=c)=cif cisaconstant and 7 is not #.
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Constant Propagation: Rule 7

X-—I( ) BV

Cout(X, X := f(...)) = * for any function call, if 7 is not #.
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Constant Propagation: Rule 8

Cout(X,Y:=...)=Cin(X,Y :=...) if Xand Y are different variables.
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Propagation Algorithm

e To use these rules, we employ a standard technique: iteration to a
fixed point:

e Mark all points in the program with current approximations of the
variable(s) of interest (X in our examples).

e Set the initial approximations to X = * for the program entry point
and X = # everywhere else.

e Repeatedly apply rules 1-8 every place they are applicable until noth-
ing changes—until the program is at a fixed point with respect to all
the transfer rules.

e We can be clever about this, keeping a list of all nodes any of whose
predecessors’ Cout values have changed since the last rule applica-
tion.
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An Example of the Algorithm

- X =%
X := 3 )
B >0 :_i;z
X=# —= / - X:=#
X = # >Y:=Z+w Y :=0 - X = H
A =2 %X :_;Z:z
A<B — o
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An Example of the Algorithm

y
A
i
5

!

>.<

*

Y - Z W Y = O
#

X X

Y
A
X
I
H
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An Example of the Algorithm

- X =*

§;=03 «— X:=#3
/&X:V
X =% 3 FY'-Z+W — - X =¥ 3
X=#3—=— e X=#3

A =2 % X ~— X7

a - X = #

A <B -— X = #

Last modified: Wed Apr 20 22:55:29 2011 CS164: Lecture #37 21



An Example of the Algorithm

Y (=72 + W Y :=0

So we can replace X with 3 in the bottom block.
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Another Example of the Propagation Algorithm

- X =*
X :=3
- X = #
‘)O o XEF
X=# = — - - X = H#
X=# _>;€;£ZL+W L -— X = #
Xz # o :
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Another Example of the Propagation Algorithm

A
N
%
!
X
%

X=# - . =
X=# _>;€;£ZL+W L -— X = #
Xz # o :
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Another Example of the Propagation Algorithm

- X =*

§;=03 ~— X=E3
/&Xﬁy
X=%F3 —»r—— - < X =% 3
X=-#3—>§:;Z+w =0 - X =# 3

e \

A =2 x X ——X=E

a - X = #

A <B - X = #
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Another Example of the Propagation Algorithm

- X =*
§;=03 —X=w3
/&X:y
X=%3 FY'-Z+W — - X =# 3
X=-#3—>X:;4 - -— X =#3
eEa \
— - X =H*
ﬁ%—BQ*X X
- X =H*
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Another Example of the Propagation Algorithm

- X =*
§;=03 ~— X=E3
/&X:qy
X=#H3— — Y o0 — X = *
x=#3—>§j;i+w e X=#3"*
cEA— \
— - X =H*
!AA‘;—BQ*X - X=#F"
- X =H*

Here, we cannot replace X in two of the basic blocks.
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A Third Example

- X =*
X :=3
- X = #
‘}O ——XEE
X=H# FY'—Z+W Y = 0 - Xz #
X =zH# - i i - X - H§
-— X = H#
vrien e
A <B - X = #
-— X = H#
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A Third Example

y
A
i
5

!

>.<

*

X=# Y :=Z + W Y := 0 )
X =zH# - i i - X - H§
-— X = H#
porer s
A <B - X = H#
-— X = H#
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A Third Example

- X =*

§;=03 ~— X=E3
/&X:V
X =% 3 FY'-Z+W — - X =¥ 3
X=#3—l — - X =# 3

-— X = H#

porer s

A <B - X = H#

-— X = H#
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A Third Example

- X =*
§;=O3 «— X:=#3

/&X:V
X =% 3 >Y°-Z+w — < X =# 3
X=#3—l - <« X=#3

- X =# 3

Qij*x - X =% 3

A <B - X=#14

-— X =#4
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A Third Example

- X =*
§;=03 ~— X=E3
/&X:V

X S e Tt o [T XT3
X =%#3 L i " - X =3 *

- X =# 3

Qij*x - X =% 3

A <B - X=#14

-— X =#4
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A Third Example

- X =%
§;=03 ~— X=E3
/&X:V
X =43 FY'—Z+W Y =0 - X = *
X=#3—l— — - X =#3*
- X =#H3*
e [TXE#E
A< B - X =¥ 4
-— X =#4

Likewise, we cannot replace X.
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Comments

e The examples used a depth-first approach to considering possible
places to apply the rules, starting from the entry point.

e In fact, the order in which one looks at statements is irrelevant.
We could have changed the Cout values after the assignments to X
first, for example.

e The # value is necessary to avoid deciding on a final value too soon.
Ineffect, it allows us to tentatively propogate constant values through
before finding out what happens in paths we haven't looked at yet.
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Ordering the Abstract Domain

e We can simplify the presentation of the analysis by ordering the
values # < ¢ < *.

e Or pictorially, with lower meaning less than,

e ...a mathematical structure known as a lattice.
e With this, our rule for computing Cin is simply a least upper bound:
Cin(x, s) = lub { Cout(x, p) such that p is a predecessor of s }.
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Termination

e Simply saying "repeat until nothing changes” doesn't guarantee that
eventually nothing changes.

e But the use of lub explains why the algorithm terminates:

- Values start as # and only increase

- By the structure of the lattice, therefore, each value can only
change twice.

e Thus the algorithm is linear in program size. The number of steps

= 2x Number of Cin and Cout values computed
= 4x Number of program statements.
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Liveness Analysis

Once constants have been globally propagated, we would like to elimi-
nate dead code

- X =%
2;—03 ~—X=3
X=3

Y

X X
w w
<
I
N
+
=
<
I
o
X
w

=
I
N
*
<
A?A
X X X
]
w w w

After constant propagation, X := 3 is dead code (assuming this is the
entire CFG)
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Terminology: Live and Dead

e In the program
X :=3; /x()x/ X =4; /x2)x/ Y :=X /*(3)*/

e the variable X is dead (never used) at point (1), live at point (2), and
may or may not be live at point (3), depending on the rest of the
program.

e More generally, a variable x is live at statement s if

- There exists a statement s’ that uses x;
- There is a path from s to s’; and
- That path has no intervening assignment to x

e A statement x := ... is dead code (and may be deleted) if x is
dead after the assignment.
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Computing Liveness

e We can express liveness as a function of information transferred
between adjacent statements, just as in copy propagation

e Liveness is simpler than constant propagation, since it is a boolean
property (true or false).

e That is, the lattice has two values, with false<true.

e It also differs in that liveness depends on what comes after a state-
ment, not before—we propagate information backwards through the
flow graph, from Lout (liveness information at the end of a stat-
ment) to Lin.
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Liveness Rule 1

< L(X) = true

S1 59 S3

Sn
LX)=?  LX)=? L(X)=true L(X) = ?
e SO
Lout(x, p) = lub { Lin(x, s) such that s is a predecessor of p }.

e Here, least upper bound (lub) is the same as "or".
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Liveness Rule 2

l <~ L(X) = true
l S B

Lout(X, s) = frue if s uses the previous value of X.

e The same rule applies to any other statement that uses the value of
X, such as tests (e.g., X < 0).
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Liveness Rule 3

<~— L(X) = false
l ~—L(X)=7?

noe

Lout(X, X := e) = false if e does not use the previous value of X.
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Liveness Rule 4

l — LX) =«
I —L(X) =«

Lout(X, s) = Lin(X, s) if s does not mention X.
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Propagation Algorithm for Liveness

e Tnitially, let all Lin and Lout values be false.

e Set Lout value at the program exit to true iff x is going to be used
elsewhere (e.g., if it is global and we are analyzing only one proce-
dure).

e As before, repeatedly pick s where one of 1-4 does not hold and
update using the appropriate rule, until there are no more violations.

e When we're done, we can eliminate assignments to X if X is dead at
the point after the assignment.
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Example of Liveness Computation

<— L(X) = false
g - 03 «— L(X) = false
<— L(X) = false
L(X) = false - / A 100 = false
Y :=Z+W : <— L(X) = false
L(X) = false - \
<— L(X) = false
PiTIrY =L = false
< -4 <— L(X) = false
A< B <— L(X) = false
<— | (X) = false
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Example of Liveness Computation

— <— L(X) = false

P70 e L= false

/ - L(X) - false
L(X) = false e e o L(X) = false
Y :=Z + W - <— L(X) = false

<— L(X) = fatse true

<— L(X) = fatse true
<— L(X) = false
; 5 <— L(X) = false

I

D <N
* X
2l

= ¢ b4
T

<— L(X) = false
L(X) = false 4<£
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Example of Liveness Computation

— <— L(X) = false

P70 e L= false

/ - L(X) - false
L(X) = fatse true — e L(X) = fatse true
Y :=Z + W — <— L(X) = fatse true

L(X) = fatse true — \
<— | (X) = false true

<— L(X) = fatse true
<— L(X) = false
; 5 <— L(X) = false

I

D <N
* X
2l

= ¢ b4
T

<— L(X) = false
L(X) = false 4<£
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Example of Liveness Computation

<— L(X) = false
<— L(X) = fatse true

L(X) = fatse true — <— |L(X) = fatse true

Y :=Z + W ' <— L(X) = fatse true

L(X) = fatse true — \
<— | (X) = false true

<— L(X) = fatse true
<— L(X) = false
< B <— L(X) = fatse true

* X
< s

I
D ><N

e s e

<— |L(X) = fatse true
L(X) = false 4{£
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Termination

e As before, a value can only change a bounded number of times: the
bound being 1 in this case.

e Termination is guaranteed

e Once the analysis is computed, it is simple to eliminate dead code,
but having done so, we must recompute the liveness information.
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SSA and Global Analysis

e For local optimizations, the single static assignment (SSA) form was
useful.

e But applying it to a full CFG is requires a trick.

e E.g., how do we avoid two assignments to the temporary holding x
after this conditional?

if a > b:
X = a
else:
X =D
# where is x at this point?

e Answer: a small kludge known as ¢ "functions”
e Turn the previous example into this:

if a > b:
xl = a
else:
x2 = Db

x3 = ¢p(x1, x2)
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¢ Functions

e An artificial device to allow SSA notation in CFGs.
e In a basic block, each variable is associated with one definition,

e ¢ functions in effect associate each variable with a set of possible
definitions.

e In general, one tries to introduce them in strategic places so as to
minimize the total number of ¢s.

e Although this device increases number of assignments in IL, regis-
ter allocation can remove many by assigning related IL registers to
the same real register.

e Their use enables us to extend such optimizations as CSE elimination
in basic blocks to Global CSE Elimination.

e With SSA form, easy to tell (conservatively) if two IL assignments
compute the same value: just see if they have the same right-hand
side. The same variables indicate the same values.
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Summary

e We've seen two kinds of analysis:
- Constant propagation is a forward analysis: information is pushed
from inputs to outputs.
- Liveness is a backwards analysis: information is pushed from out-
puts back towards inputs.
e But both make use of essentially the same algorithm.

e Numerous other analyses fall into these categories, and allow us to
use a similar formulation:
- An abstract domain (abstract relative to actual values);

- Local rules relating information between consecutive program points
around a single statement; and

- Lattice operations like least upper bound (or join) or greatest
lower bound (or meet) to relate inputs and outputs of adjoining
statements.
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