
Lecture 5: Version Control

Administrivia

• Everyone should now be registered electronically using the link on
our webpage. If you haven’t, do so today!

• I’d like to have teams formed by next Wednesday at the latest.
Preferred size is 3, but must be > 1.

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 1

The Problem

• Software projects can be large and complex.

• May involve many people, geographically distributed

• May require maintenance of several related versions

– MacOS vs. Windows vs. GNU Linux

– Stable release vs. beta release of next version

– Commericial vs. non-commercial

• May require prototyping potential features while still maintaining
existing ones.

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 2

Version-Control Systems

• Version-control systems attempt to address these and related prob-
lems.

• Allow maintenance and archiving of multiple versions of a piece of
software:

– Saving complete copies of source code

– Comparing versions

– Merging changes in several versions

– Tracking changes

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 3

Subversion

• Subversion is an open-source version-control system.

• Successor to CVS

• Provides a simple model: numbered snapshots of directory struc-
tures

• Handles local or remote repositories

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 4

Subversion’s Model

Repository User 1

User 2

add X
add Y
add Z

X Y

Z

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 5

Subversion’s Model

Repository User 1

User 2

X Y

Z

1
X Y

Z

commit

X Y

Z

checkout

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 5

Subversion’s Model

Repository User 1

User 2

delete Y
add Q
modify Z

X

Z Q

1
X Y

Z

X Y

Z

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 5

Subversion’s Model

Repository User 1

User 2

X

Z Q

1
X Y

Z

X Y

Z

2
X

Z Q

commit

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 5

Subversion’s Model

Repository User 1

User 2

X

Z Q

1
X Y

Z

X

Z Q

2
X

Z Q
update

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 5

Subversion’s Model

Repository User 1

User 2

modify X

X

Z Q

1
X Y

Z

X

Z Q
modify X

2
X

Z Q

3
X

Z Q

commit

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 5

Subversion’s Model

Repository User 1

User 2

X

Z Q

merged text

1
X Y

Z

X

Z Q

2
X

Z Q

3
X

Z Q

update

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 5

Terminology

• Repository: Set of versions

• Revision: A snapshot of a particular directory of files

• Revision number: A sequence number denoting a particular revision

• Working copy: A directory or file initially copied from a revision +
administrative data

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 6

A Useful Property

• In the previous example, Subversion does not really keep 3 complete
copies of the files.

• Instead, it maintains differences between versions: if you change
little, your revision takes up little space.

• Copying an entire file or directory in the repository is very cheap

• “Directory foo in revision 110 is the same as directory bar in revision
109”

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 7

Some Basic Commands

• We’ll be using ssh tunnels to access our Subversion repositories.

• We created an ssh key pair for you when you first logged in.

• In the following, we consider login cs164-xx and team Ursa; we’ll use
torus as a convenient host.

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 8

Creating a working copy of a repository

• To get the latest revision of projects:

svn co svn+ssh://cs61b-ta@torus/Ursa mydir

• Or just one directory:

svn co svn+ssh://cs61b-ta@torus/Ursa/proj1 mydir

• A particular revision:

svn co -r100 svn+ssh://cs61b-ta@torus/Ursa/proj1 old1

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 9

Some useful (local) abbreviations

• On instructional accounts, I have defined a few shortcuts:

$MYREPOS = svn+ssh://cs164-ta@torus.cs.berkeley/cs164-xx

$STAFFREPOS = svn+ssh://cs164-ta@torus.cs.berkeley/staff

$TEAMREPOS = svn+ssh://cs164-ta@torus.cs.berkeley/URSA

I’ll use these from now on.

• (For those of you with Bash shells at home, you can introduce these
definitions by adding

MYREPOS=svn+ssh://cs164-ta@torus.cs.berkeley/cs164-xx

etc. to your .bashrc file.)

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 10

Abbreviated commands

• To get the latest revision of projects:

svn co $TEAMREPOS myteamdir

• Or just one directory:

svn co $TEAMREPOS/proj1 myproj1teamdir

• A particular revision:

svn co -r100 $TEAMREPOS/proj1 old1

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 11

Add, Delete, Rename Files, Directories

• When you add or remove a file or directory in a working copy, must
inform Subversion of the fact:

svn add NEW-FILE

svn delete OLD-FILE-OR-DIR

svn move OLD-PLACE NEW-PLACE

• These forms don’t change the repository, just your personal working
directory.

• Must commit changes to change repository.

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 12

Reverting

• Before committing, can undo adds, removes, modifications.

• The command

$ svn revert FILE

undoes changes to FILE.

• Reverting a modification or delete restores file.

• Reverting an add removes FILE from version control without delet-
ing the file.

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 13

Committing Changes

• The command

svn commit -m "Log message"

in a working directory will create a new revision in the repository

• New revision differs from previous in the contents of the current
directory, which may only be part of the whole tree.

• Message should be informative. If you leave off the -m, will call
your favorite editor, which we suggest, because. . .

• Log messages should be accurate and informative. They are dis-
played by svn log -v, and can help both you and others looking at
changes understand why they happened and where things changed.

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 14

Example of log message (from GDB project)

As shown by svn log -v:

--

r156209 | brobecke | 2009-11-17 10:39:33 -0800 (Tue, 17 Nov 2009) | 10 lines

Changed paths:

M /trunk/gdb/gdb-head/gdb/ChangeLog.GNAT

M /trunk/gdb/gdb-head/gdb/ada-lang.c

M /trunk/gdb/gdb-head/gdb/breakpoint.c

Missing second location when breaking on inlined function.

* breakpoint.c (expand_line_sal_maybe): Adjust adjust the SAL

past the function prologue in the case where we were given only

one SAL.

* ada-lang.c (adjust_sal_past_prologue): Delete.

(ada_finish_decode_line_1): Remove call to adjust_sal_past_prologue,

already taken care of by expand_line_sal_maybe.

(ada_sals_for_line): Likewise.

Fixes IB17-025. Also related to IB15-007.

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 15

Updating

• To get versions of files from most recent revision, do this in direc-
tory you want updated:

svn update

• This will report files Subversion changes, adds, deletes, or merges

• Merged files are those modified both by you and (independently) in
the repository since you updated/checked out.

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 16

Merges and Conflicts

• Reports of changes look like this:

U foo1 foo1 is updated

A foo2 foo2 is new

D foo3 foo3 was deleted

R foo4 foo4 was deleted, then re-added

G foo5 foo5 had mods from you and in repository

that did not overlap

C foo6 conflicts: overlapping changes since you

updated/checked out.

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 17

Notating Conflicts

• When you have a conflict, you’ll find that the resulting working copy
contains both overlapping changes:

<<<<<<<<< .mine

My change

========

Repository change

>>>>>>>>>>> .r 99 (gives revision #)

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 18

Resolving Conflicts

• You can either choose to go with the repository version of conflicted
file, or yours, or do a custom edit.

• Subversion keeps around your version and the repository version in
foo6.mine, foo6.99

• Personally, I usually just edit the file.

• When conflicts are resolved, use

svn resolved foo6

or the more modern and preferred form:

svn resolve --accept=working

to indicate resolution; then commit.

• Actually, recent versions of svn will prompt you for resolutions as
you update.

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 19

Branches and Tags

• Suppose Bob wants to make some changes to his project, checking
in intermediate steps, but without interfering with partner Mary.

• Good practice is to create a branch, a copy of the project files
independent of the trunk (main development) version.

• Copy command does it:

svn mkdir $TEAMREPOS/branches # If not already done

svn copy $TEAMREPOS/proj1 $TEAMREPOS/branches/Bobs-proj1

svn co $TEAMREPOS/branches/Bobs-proj1 somedir

and go to work (be sure proj1 is committed first).

• The use of the branches directory is convention; could put it any-
where.

• Again, this copy is cheap in the repository.

• Bob’s changes in branches/Bobs-proj1 are completely independent
of the trunk (main) version.

• Rather elegant idea: no new mechanism!

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 20

Tags

• A tag is the same as a branch, except that (by convention) we don’t
usually modify it once it is created.

• Conventional to put it in the tags subdirectory, as in the instructions
for turning in your project.

• Tags are usually intended as names of particular snapshots of the
trunk or some branch (e.g., a release).

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 21

Typical examples of turning in work

• You’ve completed hw1 and want to hand it in. Currently, it’s in $MYRE-
POS/hw1 (and, of course, committed). Use

$ svn copy $MYREPOS/hw1 $MYREPOS/tags/hw1-N

Or (using UNIX shorthand):

$ svn copy $MYREPOS/{hw1,tags/hw1-N}

For a team:

$ svn copy $TEAMREPOS/{proj1,tags/proj1-N}

where N is a unique number.

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 22

Comparing Revisions

• One great feature: ability to compare versions, branches.

• Simple case: what local changes have I made to this working direc-
tory?

svn diff

• How does this working directory compare to revision 9?

svn diff -r 9

• How do revisions 9 and 10 of this directory differ?

svn diff -r 9:10

• How does Bobs-proj1 compare to revision 100 of the trunk?

svn diff $TEAMREPOS/branches/Bobs-proj1 $TEAMREPOS/proj1@100

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 23

Merging

• To merge changes between two revisions, R1 and R2, of a file or di-
rectory into a working copy means to get the changes that occurred
between R1 and R2 and make the same changes to the the working
copy (without committing them).

• After merging, as for update, must resolve any conflicts (then com-
mit the merged version).

• To merge changes into current working directory (assuming you are
in that directory at the moment):

svn merge SOURCE1@REV1 SOURCE2@REV2

where SOURCE1 and SOURCE2 are URLs (svn+ssh:. . .) or working
directories and REV1, REV2 are revision numbers.

• For short, when sources the same:

svn -r REV1:REV2 SOURCE

• To merge in changes that happened between two tagged revisions
into current working directory:

svn merge $TEAMREPOS/tags/{v1,v2}

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 24

Getting Information

• The command svn status is your friend. Identifies

– changes, additions, deletions that have not been committed;

– files, directories that have not been added

– things you’ve messed up.

• To list what’s in a repository directory:

svn ls $TEAMREPOS/tags

• To list revisions of a file or directory:

svn log FILEORDIR

svn log -v FILEORDIR # For details

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 25

Final thought

• If you commit early and often, system is quite forgiving. You can re-
construct previous states. You can freely clean things up by deleting
and checking out again.

• BUT for this to work, you must commit regularly and must make sure
that everything you want is under version control (svn status)

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 26

	Lecture 5: Version Control
	The Problem
	Version-Control Systems
	Subversion
	Subversion's Model
	Terminology
	A Useful Property
	Some Basic Commands
	Creating a working copy of a repository
	Some useful (local) abbreviations
	Abbreviated commands
	Add, Delete, Rename Files, Directories
	Reverting
	Committing Changes
	Example of log message (from GDB project)
	Updating
	Merges and Conflicts
	Notating Conflicts
	Resolving Conflicts
	Branches and Tags
	Tags
	Typical examples of turning in work
	Comparing Revisions
	Merging
	Getting Information
	Final thought

