
Lecture 5: Version Control

Administrivia

• Everyone should now be registered electronically using the link on
our webpage. If you haven’t, do so today!

• I’d like to have teams formed by next Wednesday at the latest.
Preferred size is 3, but must be > 1.
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The Problem

• Software projects can be large and complex.

• May involve many people, geographically distributed

• May require maintenance of several related versions

– MacOS vs. Windows vs. GNU Linux

– Stable release vs. beta release of next version

– Commericial vs. non-commercial

• May require prototyping potential features while still maintaining
existing ones.
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Version-Control Systems

• Version-control systems attempt to address these and related prob-
lems.

• Allow maintenance and archiving of multiple versions of a piece of
software:

– Saving complete copies of source code

– Comparing versions

– Merging changes in several versions

– Tracking changes
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Subversion

• Subversion is an open-source version-control system.

• Successor to CVS

• Provides a simple model: numbered snapshots of directory struc-
tures

• Handles local or remote repositories

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 4



Subversion’s Model

Repository User 1
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add X
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Subversion’s Model

Repository User 1

User 2

X Y

Z

1
X Y

Z

commit

X Y

Z

checkout

Last modified: Thu Jan 27 16:41:23 2011 CS164: Lecture #5 5



Subversion’s Model
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Subversion’s Model
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Subversion’s Model
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Subversion’s Model
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Subversion’s Model
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Terminology

• Repository: Set of versions

• Revision: A snapshot of a particular directory of files

• Revision number: A sequence number denoting a particular revision

• Working copy: A directory or file initially copied from a revision +
administrative data
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A Useful Property

• In the previous example, Subversion does not really keep 3 complete
copies of the files.

• Instead, it maintains differences between versions: if you change
little, your revision takes up little space.

• Copying an entire file or directory in the repository is very cheap

• “Directory foo in revision 110 is the same as directory bar in revision
109”
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Some Basic Commands

• We’ll be using ssh tunnels to access our Subversion repositories.

• We created an ssh key pair for you when you first logged in.

• In the following, we consider login cs164-xx and team Ursa; we’ll use
torus as a convenient host.
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Creating a working copy of a repository

• To get the latest revision of projects:

svn co svn+ssh://cs61b-ta@torus/Ursa mydir

• Or just one directory:

svn co svn+ssh://cs61b-ta@torus/Ursa/proj1 mydir

• A particular revision:

svn co -r100 svn+ssh://cs61b-ta@torus/Ursa/proj1 old1
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Some useful (local) abbreviations

• On instructional accounts, I have defined a few shortcuts:

$MYREPOS = svn+ssh://cs164-ta@torus.cs.berkeley/cs164-xx

$STAFFREPOS = svn+ssh://cs164-ta@torus.cs.berkeley/staff

$TEAMREPOS = svn+ssh://cs164-ta@torus.cs.berkeley/URSA

I’ll use these from now on.

• (For those of you with Bash shells at home, you can introduce these
definitions by adding

MYREPOS=svn+ssh://cs164-ta@torus.cs.berkeley/cs164-xx

etc. to your .bashrc file.)
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Abbreviated commands

• To get the latest revision of projects:

svn co $TEAMREPOS myteamdir

• Or just one directory:

svn co $TEAMREPOS/proj1 myproj1teamdir

• A particular revision:

svn co -r100 $TEAMREPOS/proj1 old1
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Add, Delete, Rename Files, Directories

• When you add or remove a file or directory in a working copy, must
inform Subversion of the fact:

svn add NEW-FILE

svn delete OLD-FILE-OR-DIR

svn move OLD-PLACE NEW-PLACE

• These forms don’t change the repository, just your personal working
directory.

• Must commit changes to change repository.
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Reverting

• Before committing, can undo adds, removes, modifications.

• The command

$ svn revert FILE

undoes changes to FILE.

• Reverting a modification or delete restores file.

• Reverting an add removes FILE from version control without delet-
ing the file.
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Committing Changes

• The command

svn commit -m "Log message"

in a working directory will create a new revision in the repository

• New revision differs from previous in the contents of the current
directory, which may only be part of the whole tree.

• Message should be informative. If you leave off the -m, will call
your favorite editor, which we suggest, because. . .

• Log messages should be accurate and informative. They are dis-
played by svn log -v, and can help both you and others looking at
changes understand why they happened and where things changed.
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Example of log message (from GDB project)

As shown by svn log -v:

------------------------------------------------------------------------

r156209 | brobecke | 2009-11-17 10:39:33 -0800 (Tue, 17 Nov 2009) | 10 lines

Changed paths:

M /trunk/gdb/gdb-head/gdb/ChangeLog.GNAT

M /trunk/gdb/gdb-head/gdb/ada-lang.c

M /trunk/gdb/gdb-head/gdb/breakpoint.c

Missing second location when breaking on inlined function.

* breakpoint.c (expand_line_sal_maybe): Adjust adjust the SAL

past the function prologue in the case where we were given only

one SAL.

* ada-lang.c (adjust_sal_past_prologue): Delete.

(ada_finish_decode_line_1): Remove call to adjust_sal_past_prologue,

already taken care of by expand_line_sal_maybe.

(ada_sals_for_line): Likewise.

Fixes IB17-025. Also related to IB15-007.
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Updating

• To get versions of files from most recent revision, do this in direc-
tory you want updated:

svn update

• This will report files Subversion changes, adds, deletes, or merges

• Merged files are those modified both by you and (independently) in
the repository since you updated/checked out.
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Merges and Conflicts

• Reports of changes look like this:

U foo1 foo1 is updated

A foo2 foo2 is new

D foo3 foo3 was deleted

R foo4 foo4 was deleted, then re-added

G foo5 foo5 had mods from you and in repository

that did not overlap

C foo6 conflicts: overlapping changes since you

updated/checked out.
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Notating Conflicts

• When you have a conflict, you’ll find that the resulting working copy
contains both overlapping changes:

<<<<<<<<< .mine

My change

========

Repository change

>>>>>>>>>>> .r 99 (gives revision #)
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Resolving Conflicts

• You can either choose to go with the repository version of conflicted
file, or yours, or do a custom edit.

• Subversion keeps around your version and the repository version in
foo6.mine, foo6.99

• Personally, I usually just edit the file.

• When conflicts are resolved, use

svn resolved foo6

or the more modern and preferred form:

svn resolve --accept=working

to indicate resolution; then commit.

• Actually, recent versions of svn will prompt you for resolutions as
you update.
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Branches and Tags

• Suppose Bob wants to make some changes to his project, checking
in intermediate steps, but without interfering with partner Mary.

• Good practice is to create a branch, a copy of the project files
independent of the trunk (main development) version.

• Copy command does it:

svn mkdir $TEAMREPOS/branches # If not already done

svn copy $TEAMREPOS/proj1 $TEAMREPOS/branches/Bobs-proj1

svn co $TEAMREPOS/branches/Bobs-proj1 somedir

and go to work (be sure proj1 is committed first).

• The use of the branches directory is convention; could put it any-
where.

• Again, this copy is cheap in the repository.

• Bob’s changes in branches/Bobs-proj1 are completely independent
of the trunk (main) version.

• Rather elegant idea: no new mechanism!
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Tags

• A tag is the same as a branch, except that (by convention) we don’t
usually modify it once it is created.

• Conventional to put it in the tags subdirectory, as in the instructions
for turning in your project.

• Tags are usually intended as names of particular snapshots of the
trunk or some branch (e.g., a release).
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Typical examples of turning in work

• You’ve completed hw1 and want to hand it in. Currently, it’s in $MYRE-
POS/hw1 (and, of course, committed). Use

$ svn copy $MYREPOS/hw1 $MYREPOS/tags/hw1-N

Or (using UNIX shorthand):

$ svn copy $MYREPOS/{hw1,tags/hw1-N}

# For a team:

$ svn copy $TEAMREPOS/{proj1,tags/proj1-N}

where N is a unique number.
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Comparing Revisions

• One great feature: ability to compare versions, branches.

• Simple case: what local changes have I made to this working direc-
tory?

svn diff

• How does this working directory compare to revision 9?

svn diff -r 9

• How do revisions 9 and 10 of this directory differ?

svn diff -r 9:10

• How does Bobs-proj1 compare to revision 100 of the trunk?

svn diff $TEAMREPOS/branches/Bobs-proj1 $TEAMREPOS/proj1@100
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Merging

• To merge changes between two revisions, R1 and R2, of a file or di-
rectory into a working copy means to get the changes that occurred
between R1 and R2 and make the same changes to the the working
copy (without committing them).

• After merging, as for update, must resolve any conflicts (then com-
mit the merged version).

• To merge changes into current working directory (assuming you are
in that directory at the moment):

svn merge SOURCE1@REV1 SOURCE2@REV2

where SOURCE1 and SOURCE2 are URLs (svn+ssh:. . . ) or working
directories and REV1, REV2 are revision numbers.

• For short, when sources the same:

svn -r REV1:REV2 SOURCE

• To merge in changes that happened between two tagged revisions
into current working directory:

svn merge $TEAMREPOS/tags/{v1,v2}
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Getting Information

• The command svn status is your friend. Identifies

– changes, additions, deletions that have not been committed;

– files, directories that have not been added

– things you’ve messed up.

• To list what’s in a repository directory:

svn ls $TEAMREPOS/tags

• To list revisions of a file or directory:

svn log FILEORDIR

svn log -v FILEORDIR # For details
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Final thought

• If you commit early and often, system is quite forgiving. You can re-
construct previous states. You can freely clean things up by deleting
and checking out again.

• BUT for this to work, you must commit regularly and must make sure
that everything you want is under version control (svn status)
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