Lecture 8: Top-Down Parsing

Last modified: Mon Feb 7 11:05:33 2011

CS164: Lecture #8 1

Beating Grammars into Programs

e A grammar looks like a recursive program. Sometimes it works to
treat it that way.

e Assume the existence of
- A function 'next’ that returns the syntactic category of the next
token (without side-effects);

- A function 'scan(C) that checks that next syntactic category is
C and then reads another token into next(). Returns the previous
value of next().

- A function ERROR for reporting errors.

e Strategy: Translate each nonterminal, A, into a function that reads
an A according to one of its productions and returns the semantic
value computed by the corresponding action.

e Result is a recursive-descent parser.

Last modified: Mon Feb 7 11:05:33 2011 CS164: Lecture #8 2

Example: Lisp Expression Recognizer

6Grammar

prog : sexp '
sexp : atom

| °(C elist ’)’

| :\;: sexp
elist : €

| sexp elist
atom : SYM

| NUM

| STRING

Last modified: Mon Feb 7 11:05:33 2011

def prog ():
sexp(); scan(-)

def sexp ():
if next() in [SYM, NUM, STRING]:
atom()
elif next() == ’(:
scan(’ (’); elist(); scan(’)’)
else:

scan(’\’’); sexp()

def atom ():
if next() in [SYM, NUM, STRING]:
scan(next())
else:
ERROR ()

def elist (O):

if next() in [SYM, NUM, STRING, ’(’,

sexp(); elist();

C5164: Lecture #8 3

Expression Recognizer with Actions

e Can make the nonterminal functions return semantic values.

e Assume lexer somehow supplies semantic values for tokens, if needed
elist : ¢ { $$ = emptyList; }
| sexp elist { $$ = cons($1, $2); }

def elist ():
if next() in [SYM, NUM, STRING, ’(’, ’\’’]:

else:
return emptyList

Last modified: Mon Feb 7 11:05:33 2011 CS164: Lecture #8 4

Expression Recognizer with Actions

e Can make the nonterminal functions return semantic values.

e Assume lexer somehow supplies semantic values for tokens, i

elist : € { $$ = emptyList; }
| sexp elist { $3 = cons($1, $2); }

def elist ():
if next() in [SYM, NUM, STRING, ’(’, ’\’’]:

vl = sexp(); v2 = elist(); return cons(vl,v2)
else:

return emptylList

Last modified: Mon Feb 7 11:05:33 2011 CS164: |

Grammar Problems I

In a recursive-descent parser, what goes wrong here?
e '
Dt {83 =891, }
e ’/’ t { $$ = makeTree(DIV, $1, $3);
e %’ t { $$ = makeTree(MULT, $1, $3); }

If we choose the second of third alternative for e, we'll get an infinite
recursion. If we choose the first, we'll miss '/' and '+’ cases.

Last modified: Mon Feb 7 11:05:33 2011 CS164: Lecture #8 5

Grammar Problems II

Well then: What goes wrong here?
p:e’ P
e : t {$$ = $1; }
| t /7 e { $$ = makeTree(DIV, $1, $3); }
| t 7%’ e { $$ = makeTree(MULT, $1, $3); }

No infinite recursion, but we still don't know which right-hand side to
choose for e.

Last modified: Mon Feb 7 11:05:33 2011 CS164: Lecture #8 6

FIRST and FOLLOW

e If a is any string of terminals and nonterminals (like the right side
of a production) then FIRST(«) is the set of terminal symbols that
start some string that o produces, plus € if o can produce the empty
string. For example:

p:e’¥P
. st
e |l o]
:ID | PC e ?)

Sincee = st = (e) = ..., weknow that '(" € FIRST(e).
Since s = ¢, we know that ¢ € FIRST(s).

e If X is anon-terminal symbol in some grammar, G, then FOLLOW(X)
is the set of ferminal symbols that can come immediately after X
in some sentential form that G can produce. For example, since p
= ed = e= std= s’Ce’) 4 = ..., weknow
that '(' € FOLLOW(s).

Last modified: Mon Feb 7 11:05:33 2011 CS164: Lecture #8 7

Using FIRST and FOLLOW

e In a recursive-descent compiler where we have a choice of right-
hand sides to produce for non-terminal, X, look at the FIRST of
each choice and take it if the next input symbol is in it...

e ...and if aright-hand side’'s FIRST set contains ¢, take it if the next
input symbol is in FOLLOW(X).

Last modified: Mon Feb 7 11:05:33 2011 CS164: Lecture #8 8

Grammar Problems III

What actions?
p:e’+P , .
Here, we don't have the previous
e : t et !

) problems, but how do we build a
et: €

| 7/ o 3 tree that associates properly (left
| 70 - to right), so that we don't interpret
e ?4 =
t: I $$.4 I/I/Iasif it were I/(1/1)?

What are FIRST and FOLLOW?

FIRST(p) = FIRST(e) = FIRST(t) = { I }
FIRST(et) = { ¢, */7, %> }

FIRST(’/? e) ={ /> } (when to use 73)
FIRST(’*’ e) = { %’ } (when to use 74)
FOLLOW(e) = { 4’ }

FOLLOW(et) = FOLLOW(e) (when to use 72)
FOLLOW(t) = { >H>, °/’, ’x’ }

Last modified: Mon Feb 7 11:05:33 2011 CS164: Lecture #8 9

Using Loops to Roll Up Recursion

e There are ways to deal with problem in last slide within the pure

framework, but why bother?
e Implement e procedure with a loop, instead:

def e():
r=1t0
while next() in [’/’, ’%’]:
if next(Q) == ’/’:
scan(’/?); t1 = t()
r = makeTree (DIV, r, t1)
else:
scan(C’*’); t1 = tQ)
r = makeTree (MULT, r, t1)
return r

Last modified: Mon Feb 7 11:05:33 2011

C5164: Lecture #8 10

	Lecture 8: Top-Down Parsing
	Beating Grammars into Programs
	Example: Lisp Expression Recognizer
	Expression Recognizer with Actions
	Grammar Problems I
	Grammar Problems II
	FIRST and FOLLOW
	Using FIRST and FOLLOW
	Grammar Problems III
	Using Loops to Roll Up Recursion

