
Lecture 1: Course Introduction

CS164: Programming Languages and Compilers
P. N. Hilfinger, 787 Soda

Spring 2015

Acknowledgement. Portions taken from CS164 notes by G. Necula.
Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 1

Administrivia

• All course information, readings, and documentation is online from
the course web page (constantly under construction).

• Get a class account electronically from the website with your CalId
(under Account Administration), and register it there.

• If you don’t have a CalId, send me mail.

• Projects require partnerships of 2–4. Start looking now.

• Please read Chapter 2 of the online Course Notes for the next few
lectures.

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 2

Course Structure

• Lectures, discussions intended to discuss and illustrate material
that you have previously read.

• Regular homework does theory, practical “finger exercises.” Done
individually.

• Projects are long programming assignments, done in teams.

• All submissions electronic.

• Target language for projects: Python (version 2.5, not latest). Im-
plementation language: C++. You’ll find on-line materials on web site.

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 3

Generic General Advice

DBC!
RTFM!

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 4

Plagiarism: Obligatory Warning

•We have software to detect plagiarism, and we Know How to Use It!

• If you must use others’ work (in moderation), cite it!

• Remember that on projects, you necessarily involve your partner.

• Most cheating cases result from time pressure. Keep up, and talk to
us as early as possible about problems.

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 5

Project

• Hidden agenda: programming design and experience.

• Substantial project in modules.

• Provides example of how complicated problem might be approached.

• Validation (testing) part of project.

• Chance to use version control for real.

• And this semester (shudder) C++.

• General rule: start early!

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 6

Implementing Programming Languages

• Strategy 1: Interpreter: program that runs programs.

• Strategy 2: Compiler: program that translates program into machine
code (interpreted by machine).

• Modern trend is hybrid:

– Compilers that produce virtual machine code for bytecode inter-
preters.

– “Just-In-Time” (JIT) compilers interpret parts of program, com-
pile other parts during execution.

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 7

Languages

• Initially, programs “hard-wired” or entered electro-mechanically

– Analytical Engine, Jacquard Loom, ENIAC, punched-card-handling
machines

• Next, stored-program machines: programs encoded as numbers (ma-
chine language) and stored as data:

– Manchester Mark I, EDSAC.

• 1953: IBM develops the 701; all programming done in assembly

• Problem: Software costs > hardware costs!

• John Backus: “Speedcoding” made a 701 appear to have floating
point and index registers. Interpreter ran 10–20 times slower than
native code.

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 8

FORTRAN

• Also due to John Backus (1954–7).

• Revolutionary idea at the time: convert high-level (algebraic formu-
lae) to assembly.

• Called “automatic programming” at the time. Some thought it impos-
sible.

•Wildly successful: language could cut development times from weeks
to hours; produced machine code almost as good as hand-written.

• Start of extensive theoretical work (and Fortran is still with us!).

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 9

After FORTRAN

• Lisp, late 1950s: dynamic, symbolic data structures.

• Algol 60: Europe’s answer to FORTRAN: modern syntax, block struc-
ture, explicit declaration.

– Dijkstra: “A marked improvement on its successors.”

– Algol report Set standard for language description.

• COBOL: late 1950’s (and still with us). Business-oriented. Intro-
duces records (structs).

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 10

The Language Explosion

• APL (arrays), SNOBOL (strings), FORMAC (formulae), and many
more.

• 1967-68: Simula 67, first "object-oriented" language.

• Algol 68: Combines FORTRANish numerical constructs, COBOLish
records, pointers, all described in rigorous formalism. Remnants
remain in C, but Algol68 deemed too complex.

• 1968: "Software Crisis" announced. Trend towards simpler lan-
guages: Algol W, Pascal, C

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 11

The 1970s

• Emphasis on “methodology”: modular programming, CLU, Modula fam-
ily.

• Mid 1970’s: Prolog. Declarative logic programming.

• Mid 1970’s: ML (Metalanguage) type inference, pattern-driven pro-
gramming. (Led to Haskell, OCaml).

• Late 1970’s: DoD starts to develop Ada to consolidate >500 lan-
guages.

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 12

Into the Present

• Complexity increases with C++.

• Then decreases with Java.

• Then increases again (C#, Java 1.5).

• Proliferation of little or specialized languages and scripting languages:
HTML, PHP, Perl, Python, Ruby,

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 13

Example: FORTRAN

C FORTRAN (OLD-STYLE) SORTING ROUTINE

C

SUBROUTINE SORT (A, N)

DIMENSION A(N)

IF (N - 1) 40, 40, 10

10 DO 30 I = 2, N

L = I-1

X = A(I)

DO 20 J = 1, L

K = I - J

IF (X - A(K)) 60, 50, 50

C FOUND INSERTION POINT: X >= A(K)

50 A(K+1) = X

GO TO 30

C ELSE, MOVE ELEMENT UP

60 A(K+1) = A(K)

20 CONTINUE

A(1) = X

30 CONTINUE

40 RETURN

END

C ----------------------------------

C MAIN PROGRAM

DIMENSION Q(500)

100 FORMAT(I5/(6F10.5))

200 FORMAT(6F12.5)

READ(5, 100) N, (Q(J), J = 1, N)

CALL SORT(Q, N)

WRITE(6, 200) (Q(J), J = 1, N)

STOP

END

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 14

Example: Algol 60

comment An Algol 60 sorting program;

procedure Sort (A, N)

value N;

integer N; real array A;

begin
real X;

integer i, j;

for i := 2 until N do begin
X := A[i];

for j := i-1 step -1 until 1 do
if X >= A[j] then begin

A[j+1] := X; goto Found

end else
A[j+1] := A[j];

A[1] := X;

Found:

end
end

end Sort

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 15

Example: APL

∩◦ An APL sorting program
∇ Z← SORT A

Z← A[△| A]

∇

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 16

Example: Python (2.5)

import sys, re

def format(x):

return "%10.5f" % x

vals = map(float, re.split(r’\s+’, sys.stdin.read().strip()))

vals.sort()

print ’\n’.join([’’.join(map(format, vals[i:i+6]))

for i in xrange(0,len(vals),6)])

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 17

Example: Prolog

/* A naive Prolog sort */

/* permutation(A,B) iff list B is a

permutation of list A. */

permutation(L, [H | T]) :-

append(V,[H|U],L),

append(V,U,W),

permutation(W,T).

permutation([], []).

/* ordered(A) iff A is in ascending order. */

ordered([]).

ordered([X]).

ordered([X,Y|R]) :- X <= Y, ordered([Y|R]).

/* sorted(A,B) iff B is a sort of A. */

sorted(A,B) :- permutation(A,B), ordered(B).

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 18

Problems to Address

• How to describe language clearly for programmers, precisely for
implementors?

• How to implement description, and know you’re right? Ans: Auto-
matic conversion of description to implementation

• How to test?

• How to save implementation effort?

– With multiple languages to multiple targets: can we re-use ef-
fort?

• How to make languages usable?

– Handle errors reasonably

– Detect questionable constructs

– Compile quickly

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 19

Classical Compiler Structure (Front)

A

Analysis

Lexical

/* Example */

Parsing

 rate[years];
salary = base +

Syntax

output(salary);

Attributed

Tree
Tree

Optimized
Virtual−Machine

Intermediate,

Static

Code

OptimizationSemantics

Push_Addr #3

Code Generation

Index
Push_Addr #4

Push #2

Add

Program

Source

Stream

Token

Syntax

Abstract

()

Tree

ID#1ID#5

ID#1

=

+

;

[]ID#2

ID#4ID#3

 ’+’, ID#3, ’[’,
<ID#1, ’=’, ID#2,

 ID#5, ’(’, ID#1,
 ID#4, ’]’, ’;’,

+

 ’)’, ’;’, ...>

[]ID#2

ID#4ID#3

(double)

(double)

(double[])
(int)

Optimization

(double)

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 20

Classical Compiler Structure (Back)

Real Machine

Code
A

A

Back End

(Object file)

Other Object

Files and

Libraries

Executable

File
Results

Linking Execution

−or−

Optimized

Real Machine

Code

Code

Generation Optimization

Results
Interpretation

Last modified: Wed Jan 21 01:57:08 2015 CS164: Lecture #1 21

	Lecture 1: Course Introduction
	Administrivia
	Course Structure
	Generic General Advice
	Plagiarism: Obligatory Warning
	Project
	Implementing Programming Languages
	Languages
	FORTRAN
	After FORTRAN
	The Language Explosion
	The 1970s
	Into the Present
	Example: FORTRAN
	Example: Algol 60
	Example: APL
	Example: Python (2.5)
	Example: Prolog
	Problems to Address
	Classical Compiler Structure (Front)
	Classical Compiler Structure (Back)

