
Lecture 14: Parser Conflicts, Using Ambiguity, Error
Recovery

Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 1

Shift/Reduce Conflicts

• If a DFA state contains both [X: α•aβ, b] and [Y: γ•, a], then we
have two choices when the parser gets into that state at the | and
the next input symbol is a:

– Shift into the state containing [X: αa•β, b], or

– Reduce with Y: γ•.

• This is called a shift-reduce conflict.

• Often due to ambiguities in the grammar. Classic example: the dan-
gling else

S: "if" E "then" S | "if" E "then" S "else" S | . . .

• This grammar gives rise to a DFA state containing

[S: "if" E "then" S•, "else"] and [S: "if" E "then" S•"else" S, . . .]

• So if “else” is next, we can shift or reduce.

Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 2

More Shift/Reduce Conflicts

• Consider the ambiguous grammar

E : E + E | E * E | int

• We will have states containing

[E: E + •E, */+] [E: E + E •, */+]

[E: •E + E, */+] E
=⇒ [E: E •+ E, */+]

[E: •E * E, */+] [E: E •* E, */+]
.

• Again we have a shift/reduce conflict on input ’*’ or ’+’ (in the item
set on the right).

• We probably want to shift on ’*’ (which is usually supposed to bind
more tightly than ’+’)

• We probably want to reduce on ’+’ (left-associativity).

• Solution: provide extra information (the precedence of ’*’ and ’+’)
that allows the parser generator to decide what to do.

Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 3

Using Precedence in Bison/Horn

• In Bison or Horn, you can declare precedence and associativity of
both terminal symbols and rules,

• For terminal symbols (tokens), there are precedence declarations,
listed from lowest to highest precedence:

%left ’+’

%left ’*’

%right "**"

Symbols on each such line have the same precedence.

• For a rule, precedence = that of its last terminal (Can override with
%prec if needed, cf. the Bison manual).

• Now, we resolve shift/reduce conflict with a shift if:

– The next input token has higher precedence than the rule, or

– The next input token has the same precedence as the rule and
the relevent precedence declaration was %right.

and otherwise, we choose to reduce the rule.

Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 4

Example of Using Precedence to Solve S/R Conflict (1)

• Assuming we’ve declared

%left ’+’

%left ’*’

the rule E: E + E will have precedence 1 (left-associative) and the
rule E: E * E will have precedence 2.

• So, when the parser confronts the choice in state 6 w/next token
’*’,

5 E: E + •E, */+
E: •E + E, */+
E: •E * E, */+
etc.

6E: E + E•, */+
E: E •+ E, */+
E: E •* E, */+

E

it will choose to shift because the ‘*’ has higher precedence than
the rule E + E.

• On the other hand, with input symbol ’+’, it will choose to reduce,
because the input token then has the same precedence as the rule
to be reduced, and is left-associative.

Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 5

Example of Using Precedence to Solve S/R Conflict (2)

• Back to our dangling else example. We’ll have the state

10 S: "if" E "then" S •, "else"
S: "if" E "then" S•"else" S, "else"
etc.

• Can eliminate conflict by declaring the token “else” to have higher
precedence than “then” (and thus, than the first rule above).

• HOWEVER: best to limit use of precedence to these standard ex-
amples (expressions, dangling elses). If you simply throw them in
because you have a conflict you don’t understand, you’re like to end
up with unexpected parse trees or syntax errors.

Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 6

Reduce/Reduce Conflicts

• The lookahead symbols in LR(1) items are only considered for reduc-
tions in items that end in ‘•’.

• If a DFA state contains both

[X: α•, a] and [Y: β•, a]

then on input ‘a’ we don’t know which production to reduce.

• Such reduce/reduce conflicts are often due to a gross ambiguity in
the grammar.

• Example: defining a sequence of identifiers with

S: ǫ | id | id S

• There are two parse trees for the string id:

S ⇒id or S ⇒id S ⇒id.

Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 7

Reduce/Reduce Conflicts in DFA

• For this example, you’ll get states:

0 S’: •S, ⊣
S: •, ⊣
S: •id, ⊣
S: •id S, ⊣
S’: S •, ⊣

1S: id •, ⊣
S: id •S, ⊣
S: •, ⊣
S: id S •, ⊣
S: •id, ⊣
S: •id S, ⊣

id

• Reduce/reduce conflict on input ‘⊣’.

• Better rewrite the grammar: S: ǫ | id S.

Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 8

Parsing Errors

• One purpose of the parser is to filter out errors that show up in
parsing

• Later stages should not have to deal with possibility of malformed
constructs

• Parser must identify error so programmer knows what to correct

• Parser should recover so that processing can continue (and other
errors found).

• Parser might even correct error (e.g., PL/C compiler could “correct”
some Fortran programs into equivalent PL/1 programs!)

Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 9

Identifying Errors

• All of the valid parsers we’ve seen identify syntax errors as soon as
possible.

• Valid prefix property: all the input that is shifted or scanned is the
beginning of some valid program. . .

• . . . But the rest of the input might not be.

• So in principle, deleting the lookahead (and subsequent symbols) and
inserting others will give a valid program.

Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 10

Automating Recovery

• Unfortunately, best results require using semantic knowledge and
hand tuning.

– E.g., a(i].y = 5 might be turned to a[i].y = 5 if a is statically known
to be a list, or a(i).y = 5 if a function.

• Some automatic methods can do an OK job that at least allows
parser to catch more than one error.

Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 11

Bison’s Technique

• The special terminal symbol error is never actually returned by the
lexer.

• Gets inserted by parser in place of erroneous tokens.

• Parsing then proceeds normally.

Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 12

Example of Bison’s Error Rules

Suppose we want to throw away bad statements and carry on

stmt : whileStmt

| ifStmt

| ...

| error NEWLINE

;

Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 13

Response to Error

• Consider erroneous text like

if x y: ...

• When parser gets to the y, will detect error.

• Then pops items off parsing stack until it finds a state that allows a
shift or reduction on ‘error’ terminal

• Does reductions, then shifts ‘error’.

• Finally, throws away input until it finds a symbol it can shift after
‘error’, according to the grammar.

Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 14

Error Response, contd.

• So with our example:

stmt : whileStmt

| ifStmt

| ...

| error NEWLINE

;

We see ‘y’, throw away the ‘if x’, so as to be back to where a stmt
can start.

• Shift ‘error’ and throw away more symbols to NEWLINE. Then carry
on.

Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 15

Of Course, It’s Not Perfect

• “Throw away and punt” is sometimes called “panic-mode error recov-
ery”

• Results are often annoying.

• For example, in our example, there could be an INDENT after the
NEWLINE, which doesn’t fit the grammar and causes another error.

• Bison compensates in this case by not reporting errors that are too
close together

• But in general, can get cascade of errors.

• Doing it right takes a lot of work.

Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 16

Bison Examples

[See lecture15 directory.]

Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 17

A Hierarchy of Grammar Classes

GLR

Unambiguous Grammars Ambiguous

Grammars

LR(k)

LR(1)

LALR(1)

SLR

LR(0)LL(0)

LL(k)

LL(1)

From Andrew
Appel, “Mod-
ern Compiler
Implementa-
tion in Java”

Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 18

Summary

• Parsing provides a means of tying translation actions to syntax clearly.

• A simple parser: LL(1), recursive descent

• A more powerful parser: LR(1)

• An efficiency hack: LALR(1), as in Bison.

• Earley’s algorithm provides a complete algorithm for parsing all context-
free languages.

• We can get the same effect in Bison by other means (the %glr-parser
option, for Generalized LR), as seen in one of the examples from lec-
ture #5.

Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 19

	Lecture 14: Parser Conflicts, Using Ambiguity, Error Recovery
	Shift/Reduce Conflicts
	More Shift/Reduce Conflicts
	Using Precedence in Bison/Horn
	Example of Using Precedence to Solve S/R Conflict (1)
	Example of Using Precedence to Solve S/R Conflict (2)
	Reduce/Reduce Conflicts
	Reduce/Reduce Conflicts in DFA
	Parsing Errors
	Identifying Errors
	Automating Recovery
	Bison's Technique
	Example of Bison's Error Rules
	Response to Error
	Error Response, contd.
	Of Course, It's Not Perfect
	Bison Examples
	A Hierarchy of Grammar Classes
	Summary

