Lecture 36: IL for Arrays

Multi-dimensional Arrays

- A 2D array is a 1 D array of 1 D arrays.
- Java uses arrays of pointers to arrays for >1D arrays.
- But if row size constant, for faster access and compactness, may prefer to represent an $M \times N$ array as a 1D array of 1 D rows (not pointers to rows): row-major order...
- Or, as in FORTRAN, a 1D array of 1D columns: column-major order.
- So apply the formula for 1D arrays repeatedly-first to compute the beginning of a row and then to compute the column within that row:

$$
\& A[i][j]=\& A+i \cdot S \cdot N+j \cdot S
$$

for an M-row by N-column array, where S, again, is the size of an individual element.

One-dimensional Arrays

- How do we process retrieval from and assignment to $\mathrm{x}[\mathrm{i}]$, for an array x?
- We assume that all items of the array have fixed size-S bytesand are arranged sequentially in memory (the usual representation).
- Easy to see that the address of x [i] must be

$$
\& x+S \cdot i
$$

where $\& x$ is intended to denote the address of the beginning of x .

- Generically, we call such formulae for getting an element of a data structure access algorithms.
- The IL might look like this:

$$
\begin{aligned}
& \operatorname{cgen}\left(\& \mathrm{~A}[\mathrm{E}], t_{0}\right): \\
& \quad \operatorname{cgen}\left(\& \mathrm{~A}, t_{1}\right) \\
& \operatorname{cgen}\left(\mathrm{E}, t_{2}\right) \\
& \Rightarrow t_{3}:=t_{2} * \mathrm{~S} \\
& \Rightarrow t_{0}:=t_{1}+t_{3}
\end{aligned}
$$

IL for $M \times N$ 2D array

```
cgen(&e1[e2,e3], t):
    cgen(e1, t1); cgen(e2,t2); cgen(e3,t3)
    cgen(N, t4) # (N need not be constant)
    t t5 := t4 * t2
    # t6 := t5 + t3
    t7 := t6 * S
    # t := t7 + t1
```


Array Descriptors

- Calculation of element address \&e1 [e2, e3] has the form

$$
v o+S 1 \times e 2+S 2 \times e 3
$$

, where

- VO (\&e1 $[0,0])$ is the virtual origin.
- S1 and S2 are strides.
- All three of these are constant throughout the lifetime of the array (assuming arrays of constant size).
- Therefore, we can package these up into an array descriptor, which can be passed in lieu of the array itself, as a kind of "fat pointer" to the array:

$$
\begin{array}{|l|l|l|}
\hline \& \in 1[0][0] & S \times N & S \\
\hline
\end{array}
$$

Array Descriptors (III)

- By judicious choice of descriptor values, can make the same formula work for different kinds of array.
- For example, if lower bounds of indices are 1 rather than 0 , must compute address

$$
\text { \&e[1,1] + S1 } \times(e 2-1)+\text { S2 } \times(e 3-1)
$$

- But some algebra puts this into the form

$$
\mathrm{vo}^{\prime}+\mathrm{S} 1 \times \mathrm{e} 2+\mathrm{S} 2 \times \mathrm{e} 3
$$

where

$$
\mathrm{VO}^{\prime}=\& e[1,1]-\mathrm{S} 1-\mathrm{S} 2=\& e[0,0] \text { (if it existed). }
$$

- So with the descriptor

$$
\begin{array}{|c|c|c|}
\hline \text { VO' } & \mathrm{S} \times \mathrm{N} & \mathrm{~S} \\
\hline
\end{array}
$$

we can use the same code as on the last slide.

Array Descriptors (II)

- Assuming that e1 now evaluates to the address of a $2 D$ array descriptor, the IL code becomes:

```
cgen(&e1[e2,e3], t):
    cgen(e1, t1); cgen(e2,t2); cgen(e3,t3)
    # t4 := *t1; # The vo
    # t5 := *(t1+4) # Stride #1
    # t6 := *(t1+8) # Stride #2
    t7 := t5 * t2
    t t8 := t6 * t3
    t9 := t4 + t7
    t10:= t9 + t8
```

