
Lecture 6: Parsing

Administrivia

• We will assign orphans to groups randomly in a few days.

• Josh Hug interviewing today and Tuesday:

– Vision Seminar: Mon 04:30–05:30 in 380 Soda

– Undergrads: Tues 09:30–10:15am in 380 Soda

– Mock Class: Tues 10:30-11:30am in 380 Soda

– Grads: Tues 03:00–03:45pm in 315 Soda

Last modified: Tue Feb 3 15:52:27 2015 CS164: Lecture #6 1

A Glance at the Map

Source
code

Lexical
Analysis Tokens

Parsing
AST

Semantic
Analysis Decorated

AST

We are here

Last modified: Tue Feb 3 15:52:27 2015 CS164: Lecture #6 2

Review: BNF

• BNF is another pattern-matching language;

• Alphabet typically set of tokens, such as from lexical analysis, re-
ferred to as terminal symbols or terminals.

• Matching rules have form:

X : α1α2 · · ·αn,

where X is from a set of nonterminal symbols (or nonterminals or
meta-variables), n ≥ 0, and each αi is a terminal or nonterminal
symbol.

• For emphasis, may write X : ǫ when n = 0.

• Read X : α1α2 · · ·αn, as

“An X may be formed from the concatenation of an α1, α2, . . . ,
αn.”

• Designate one nonterminal as the start symbol.

• Set of all matching rules is a context-free grammar.

Last modified: Tue Feb 3 15:52:27 2015 CS164: Lecture #6 3

Derivations

• String (of terminals) T is in the language described by grammar G,
(T ∈ L(G)) if there is a derivation of T from the start symbol of G.

• Derivation of T = τ1 · · · τk from nonterminal A is sequence of sen-
tential forms:

A ⇒ α11α12 . . . ⇒ α21α22 . . . ⇒ · · · ⇒ τ1 . . . τk

where each αij is a terminal or nonterminal symbol.

• We say that

α1 · · ·αm−1Bαm+1 · · ·αn ⇒ α1 · · ·αm−1β1 · · · βpαm+1 · · ·αn

if B : β1 · · ·βp is a production. (1 ≤ m ≤ n).

• If Φ and Φ′ are sentential forms, then Φ1
∗=⇒ Φ2 means that 0 or

more ⇒ steps turns Φ1 into Φ2. Φ1
+=⇒ Φ2 means 1 or more ⇒ steps

does it.

• So if S is start symbol of G, then T ∈ L(G) iff S
+=⇒ T .

Last modified: Tue Feb 3 15:52:27 2015 CS164: Lecture #6 4

Example of Derivation

1. e : s ID

2. e : s ’(’ e ’)’

3. e : e ’/’ e

4. s :

5. s : ’+’

6. s : ’-’

Alternative Notation

e : s ID

| s ’(’ e ’)’

| e ’/’ e

s : ǫ | ’+’ | ’-’

Problem: Derive - ID / (ID / ID)

e
3=⇒ e / e

1=⇒ s ID / e
6=⇒ - ID / e

2=⇒ - ID / s (e)
4=⇒ - ID / (e)

3=⇒ - ID / (e / e)
1=⇒ - ID / (s ID / e)

4=⇒ - ID / (ID / e)
1=⇒ - ID / (ID / s ID)

4=⇒ - ID / (ID / ID)

Last modified: Tue Feb 3 15:52:27 2015 CS164: Lecture #6 5

Types of Derivation

• Context free means can replace nonterminals in any order (i.e., re-
gardless of context) to get same result (as long as you use same
productions).

• So, if we use a particular rule for selecting nonterminal to “produce”
from, can characterize derivation by just listing productions.

• Previous example was leftmost derivation: always choose leftmost
nonterminals. Completely characterized by list of productions: 3, 1,
6, 2, 4, 3, 1, 4, 1, 4.

Last modified: Tue Feb 3 15:52:27 2015 CS164: Lecture #6 6

Derivations and Parse Trees

• A leftmost derivation also completely characterized by parse tree:

e

e

s

- ID /

e

s

(

e

e

s

ID /

e

s

ID)

• What is the rightmost derivation for this?

Derivations and Parse Trees

• A leftmost derivation also completely characterized by parse tree:

e

e

s

- ID /

e

s

(

e

e

s

ID /

e

s

ID)

• What is the rightmost derivation for this?

e
3=⇒ e / e

2=⇒ e / s (e)
3=⇒ e / s (e / e)

1=⇒ e / s (e / s ID)
4=⇒ e / s (e / ID)

1=⇒ e / s (s ID / ID)
4=⇒ e / s (ID / ID)

4=⇒ e / (ID / ID)
1=⇒ s ID / (ID / ID)

6=⇒ - ID / (ID / ID)
Last modified: Tue Feb 3 15:52:27 2015 CS164: Lecture #6 7

Ambiguity

• Only one derivation for previous example.

• What about ‘ID / ID / ID’?

• Claim there are two parse trees, corresponding to two leftmost
derivations. What are they?

• If there exists even one string like ID / ID / ID in L(G), we say G

is ambiguous (even if other strings only have one parse tree).

Last modified: Tue Feb 3 15:52:27 2015 CS164: Lecture #6 8

Ambiguity

• Only one derivation for previous example.

• What about ‘ID / ID / ID’?

• Claim there are two parse trees, corresponding to two leftmost
derivations. What are they?

e

e

s

- ID /

e

e

s

ID /

e

s

ID

e

e

s

ID/

e

e

s

- ID /

e

s

ID

• If there exists even one string like ID / ID / ID in L(G), we say G

is ambiguous (even if other strings only have one parse tree).

Last modified: Tue Feb 3 15:52:27 2015 CS164: Lecture #6 8

Review: Syntax-Directed Translation

• Want the structure of sentences, not just whether they are in the
language, because this drives translation.

• Associate translation rules to each production, just as Flex associ-
ated actions with matching patterns.

• Bison notation:

e : e ’/’ e { $$ = doDivide($1, $3); }

provides way to refer to and set semantic values on each node of a
parse tree.

• Compute these semantic values from leaves up the parse tree.

• Same as the order of a rightmost derivation in reverse (a.k.a a
canonical derivation).

• Alternatively, just perform arbitrary actions in the same order.

Last modified: Tue Feb 3 15:52:27 2015 CS164: Lecture #6 9

Example: Conditional statement

Problem: if-else or if-elif-else statements in Python (else optional).
Assume that only (indented) suites may be used for then and else clauses,
that nonterminal stmt defines an individual statement (one per line), and
that nonterminal expr defines an expression. Lexer supplies INDENTs
and DEDENTs. A cond is a kind of stmt.

Last modified: Tue Feb 3 15:52:27 2015 CS164: Lecture #6 10

Example: Conditional statement

Problem: if-else or if-elif-else statements in Python (else optional).
Assume that only (indented) suites may be used for then and else clauses,
that nonterminal stmt defines an individual statement (one per line), and
that nonterminal expr defines an expression. Lexer supplies INDENTs
and DEDENTs. A cond is a kind of stmt.

expr : ...

stmt : ... | cond | ...

cond : "if" expr ’:’ suite elifs else

suite: INDENT stmts DEDENT

stmts: stmt | stmts stmt

elifs: ǫ | "elif" expr ’:’ suite elifs

else : ǫ | "else" ’:’ suite

Last modified: Tue Feb 3 15:52:27 2015 CS164: Lecture #6 10

Example: Conditional statement in Java

Problem: if-else in Java. Assume that nonterminal stmt defines an
individual statement (including a block in {}).

Last modified: Tue Feb 3 15:52:27 2015 CS164: Lecture #6 11

Example: Conditional statement in Java

Problem: if-else in Java. Assume that nonterminal stmt defines an
individual statement (including a block in {}).

expr : ...

stmt : ... | cond | ...

cond : "if" ’(’ expr ’)’ stmt else

else : ǫ | "else" stmt

But this doesn’t quite work: recognizes correct statements and rejects
incorrect ones, but is ambiguous. E.g.,

if (foo) if (bar) walk(); else chewGum();

Do we chew gum if foo is false? That is, is this equivalent to

if (foo) { if (bar) walk(); } else chewGum();

/*or*/ if (foo) { if (bar) walk(); else chewGum(); } ?

Last modified: Tue Feb 3 15:52:27 2015 CS164: Lecture #6 11

Example resolved: Conditional statement in Java

The rule is supposed to be “each ‘else’ attaches to the nearest open ‘if’
on the left,” which is captured by:

expr : ...

stmt : ... | cond | ...

stmt_closed : ... | cond_closed | ...

cond_closed : "if" ’(’ expr ’)’ stmt_closed "else" stmt_closed

cond : "if" ’(’ expr ’)’ stmt

| "if" ’(’ expr ’)’ stmt_closed "else" stmt

This does not allow us to interpret

if (foo) if (bar) walk(); else chewGum();

as

if (foo) { if (bar) walk(); } else chewGum();

But it’s not exactly clear, is it?

Last modified: Tue Feb 3 15:52:27 2015 CS164: Lecture #6 12

Puzzle: NFA to BNF

Problem: What BNF grammar accepts the same string as this NFA?

0

1
ǫ

0

1
2

1

0

3

0

ǫ

4

ǫ 0

1
5

0

1
6

0

1
7

0

ǫ

0

Last modified: Tue Feb 3 15:52:27 2015 CS164: Lecture #6 13

Puzzle: NFA to BNF

Problem: What BNF grammar accepts the same string as this NFA?

0

1
ǫ

0

1
2

1

0

3

0

ǫ

4

ǫ 0

1
5

0

1
6

0

1
7

0

ǫ

0

A conventional answer (from class):

S: S2s Z | S3s Z S2: Z ’1’ Z ’1’

Z: ’0’ Z | ǫ S3: Z ’1’ Z ’1’ Z ’1’

S2s: S2 | S2 S2s

S3s: S3 | S3 S3s

Last modified: Tue Feb 3 15:52:27 2015 CS164: Lecture #6 13

Puzzle: NFA to BNF

Problem: What BNF grammar accepts the same string as this NFA?

0

1
ǫ

0

1
2

1

0

3

0

ǫ

4

ǫ 0

1
5

0

1
6

0

1
7

0

ǫ

0

General answer (adaptable to any NFA), with one nonterminal per state:
S0: S1 | S4 S4: ’1’ S5 | ’0’ S4

S1: ’1’ S2 | ’0’ S1 S5: ’1’ S6 | ’0’ S5

S2: ’1’ S3 | ’0’ S2 S6: ’1’ S7 | ’0’ S6

S3: S1 | ’0’ S3 | ǫ S7: S4 | ’0’ S7 | ǫ

Nonterminal Sk is “the set of strings that will get me from Sk in the
NFA to a final state in the NFA.”

Last modified: Tue Feb 3 15:52:27 2015 CS164: Lecture #6 13

	Lecture 6: Parsing
	A Glance at the Map
	Review: BNF
	Derivations
	Example of Derivation
	Types of Derivation
	Derivations and Parse Trees
	Ambiguity
	Review: Syntax-Directed Translation
	Example: Conditional statement
	Example: Conditional statement in Java
	Example resolved: Conditional statement in Java
	Puzzle: NFA to BNF

