Packet Delay

CS168 and EE122 GSIs past and present

What We're Doing Today

- Review of delays
- Crash course on "virtual circuits"
- Work through worksheet in pairs

Nodal Delay Sum of several types of delay

(Diagram from Kurose & Ross)

Delays

Processing Delay

- Processing on reception
- Examine header and determine where to send
- Error checking (maybe)

Delays

Queuing Delay

- Time packet spends in buffer/queue
- Only when arrival rate > service rate
- Especially significant when packet arrivals are *bursty*

Queuing Delay

BC's transmission delay is twice that of AB

Sidenote: Burstiness

Delays

Transmission Delay

- Time taken to push data onto link
- Measured...
 - .. from when first bit of data pushed onto link
 - .. until last bit of data is pushed onto the link
- Limited by the link *Bandwidth*

Propagation Delay

- Time taken by data to traverse link
- Limited by the speed of light
- Latency of a link is the propagation delay to traverse the link

(Diagram from Kurose & Ross)

Transmission & Propagation

- How fast is my speech?
 - ~1000 ft/s (speed of sound)
 - ~125 words/minute
- What about Sean Shannon?
 - ~1000 ft/s (speed of sound)
 - ~655 words/minute
- How long would it take:
 - to hear me or Sean, if we shout "Help" (very loudly) from Stanford? (~40 miles [~200,000 feet] away)
 - me or Sean to dictate War and Peace? (~600,000 words)

Transmission & Propagation

Beyond Nodal Delays

• End-to-End Delay

– Just the sum of the nodal delays along a path

- Round Trip Time (RTT)
 - Time for packet to reach destination
 - .. and for response to return to source

TL;DR Delays

- Covered more in section 4.2 of text

 which you may not have read yet!
- With what you got in lecture and from section 1.3.2, here's what you need to know for the worksheet...
- Basic idea:
 - Make a packet switched network a bit more like a circuit switched network
 - How?

(From lecture)

- Circuit Establishment
 - Source sends a setup packet to switches along path/ circuit toward destination
 - Switches along path set up connection
 - At end of path, destination sends confirmation back
- Transfer
 - Data sent along path/circuit
 - Note: Data sent along established circuit is cut-through!
 - Question: What is the transmission rate of the circuit?
- Circuit Teardown
 - Source sends teardown packet along path
 - Destination sends confirmation back

- Circuit Establishment
 - Source sends a setup packet to switches along path/ circuit toward destination
 - Switches along path set up connection
 - At end of path, destination sends confirmation back
- Transfer
 - Data sent along path/circuit
 - Note: Data sent along established circuit is cut-through!
 - Question: What is the transmission rate of the circuit?
- Circuit Teardown
 - Source sends teardown packet along path
 - Destination sends confirmation back

- Circuit Establishment
 - Source sends a setup packet to switches along path/ circuit toward destination
 - Switches along path set up connection
 - At end of path, destination sends confirmation back
- Transfer
 - Data sent along path/circuit
 - Note: Data sent along established circuit is cut-through!
 - Question: What is the transmission rate of the circuit?
- Circuit Teardown
 - Source sends teardown packet along path
 - Destination sends confirmation back

WORKSHEET!

