DNS and HTTP



Domain Name Service

e Host addresses: e.g., 169.229.131.109
— a humber used by protocols
— conforms to network structure (the “where”)

* Host names: e.g., instr.eecs.berkeley.edu
— mnemonic hame usable by humans
— conforms to organizational structure (the “who”)

 The Domain Name System (DNS) is how we
map from one to the other

— a directory service for hosts on the Internet



Hierarchical Namespace

root

com gov mil org net uk fr

« “Top Level Domains’ are at the top
 Domains are subtrees

— e.g.:.edu, berkeley.edu, eecs.berkeley.edu

* Name is leaf-to-root path
— instr.eecs.berkeley.edu

 Name collisions trivially avoided!

— each domain’s responsibility



Recursive DNS Query

www.google.com

Where is www.google.com? w ‘

Ask local DNS server to get H

the response for you |
e respo N s¥

‘Let me find out where it is dns.berkel

: .edu nsl.google.co
for you” ﬁ

€



Iterative DNS query

www.google.com

Where is www.google.com? w

< D
e Ask Server who to ask next < .;l
* “l'don’t know this name, but

this other server might” dns.berkel nsl.google.com

7




DNS Records

 DNS info. stored as resource records (RRs)
— RR is (name, value, type, TTL)
* Type = A: (-> Address)
— name = hostname
— value = IP address
* Type = NS: (-> Name Server)
— name = domain
— value = name of dns server for domain



DNS Records (contd.)

e Type = CNAME: (-> Canonical NAME)

— name = hosthame

— value = canonical name
e Type = MX: (-> Mail eXchanger)
— name = domain in email address
— value = canonical name(s) of mail server(s)



Fun with dig!



Hyper Text Transfer Protocol (HTTP)

Client-server architecture
— server is “always on” and “well known”
— clients initiate contact to server

Synchronous request/reply protocol
— Runs over TCP, Port 80

Stateless

ASCII format



Client/Server communication

(method) (resource)

(protocol version)

GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close

Accept-language:
(blank line)

~ (header) <€ HTTP Request

fr (Client to Server)

(protocol version) (status code) (status phrase)

(header) -

HTTP Response

(Server to Client)

(data) -

HTTP/1.1 200 OK

" Connection close

Date: Thu, 06 Aug 2006 12:00:15 GMT
Server: Apache/1.3.0 (Unix)

> Last-Modified: Mon, 22 Jun 2006

Content-Length: 6821

. Content-Type: text/html

(blank line)
data data data data data



HTTP’s stateless-ness

* Pros? Cookies!

— Scalable ff\what the hell are you doing?!!

— Easier to NA

N\ Me looking for

— Order of g |_internet cookies
 Cons?

— Can’t kee rofiles...)
e Solution?

— Client-sid




HTTP Performance:
Non-pers!stent TCP Connection

TCP SYN

b Q
Z

1RTT h
TCP SYN-ACK

A

TCP ACK + HTTP REQUEST

v

K) 1RTT

) - + transmission
[4 \ TCP ACK + HTTP RESPONSE
5

A

TCP ACK

v

TCP FIN

v

TCP FIN-ACK

A

TCP ACK

v



Other options?

* Concurrent Requests and responses
— Use multiple connections in parallel

e Persistent Connections

— Maintain TCP connection across multiple
requests

* Pipelined Requests and Responses

— Batch requests and responses to reduce the
number of packets



WWW.IN-N-OUT.COM

Cheeseburger, French Fries, and Medium Drink




Q2

c Page Media 1 Media 2 Media 3 Total
Sequential 1 RTT (TCP)
requests with
hon- 1RTT
persistent (HTTF)
TCP P/T
connections 1 RTT (TCP)
1 RTT
(HTTP) 8 RTTs
M/T
1 RTT (TCP) +P/T
1 RTT +3M/T
(HTTP)
M/T
1 RTT (TCP)
1 RTT
(HTTP)

M/T




Q3

c Page Media 1 Media 2 Media 3 Total
Concurrent 1 RTT (TCP)
with non-
persistent LRTT
TCP (HTTP)
connections P/T
1 RTT (TCP) | 1RTT (TCP) 1RTT (TCP)
1 RTT 1RTT (HTTP) | 1RTT (HTTP) 4 RTTs
(HTTP)
M/(T/3) M/(T/3) /T
M/(T/3)

+3M/T




C Page Media 1 Media 2 Media 3 Total
Sequential with 1 RTT (TCP)
asingle
persistent TCP 1RTT (HTTP)
connection P/T
1 RTT (HTTP)
M/T 5RTTs
1 RTT (HTTP) +P/T
M/T + 3M/T
1RTT (HTTP)
M/T
Pipelined 1 RTT (TCP)
within a single
persistent TCP 1RTT (HTTP)
connection P/T
1RTT (HTTP)
M/T + P/T
M/T + 3M/T




