A Complete End-to-End View

DNS Server (9.9.9.9)

To get an IP address, broadcast DHCP message that is picked by the DHCP server

DHCP Discovery

It is a UDP packet sent on source port 68 and destination port 67

UDP DHCP Discovery

IP contains:

- Source Address: 0.0.0.0
 - We do not yet have an IP address
- Destination Address: 255.255.255.255
 - We broadcast the request

Add a Link Layer Frame (even Wifi has same format as Ethernet Frame)

- Destination MAC address is FF:FF:FF:FF:FF:FF
 - To broadcast

LL	IP	UDP	DHCP Discovery
----	----	-----	----------------

- Machine running DHCP server picks up the request
- Link Layer driver in the server shreds the LL header
- IP Layer of the kernel shreds the IP header
- UDP layer shreds the UDP header, after demultiplexing the packet to the server application running on port 67.

LL	IP	UDP	DHCP Discovery
----	----	-----	----------------

- Prepares an offer containing:
 - IP address of the requesting entity
 - DNS server's IP address
 - Default Gateway's IP address
 - Subnet Mask
- Encapsulated by UDP, IP and LL frames

- Prepares an offer containing:
 - IP address of the requesting entity
 - DNS server's IP address
 - Default Gateway's IP address
 - Subnet Mask
- Encapsulated by UDP, IP and LL frames

Next Steps:

- Client accepts an offer by broadcasting a "Request message
- The server sends back an ACK

If Ethernet Instead of Wifi?

LL IP UDP DHCP Discovery

- The basic protocol remains same upto network
- Wifi and Ethernet use the same LL header
- Preamble and CRC added by Physical layer varies
- Technology used to transmit the packets varies
 - e.g. CSMA/CD for Ethernet CSMA/CA for Wifi, stronger reliability for Wifi etc

Step 2: Getting Destination IP Address

Send a DNS request to the local DNS server to obtain IP address www.google.com

DNS Request

Step 2:Getting Destination IP Address

It is a UDP packet sent on destination port 53

UDP DNS Request

Step 2:Getting Destination IP Address

IP contains:

- Source Address: Obtained by DHCP
- Destination Address: Local DNS server's IP address (9.9.9.9), also contained DHCP response

Step 2: Getting Destination IP Address

Add a LL frame

Destination MAC address??

- It knows that 9.9.9.9 is outside the subnet, since it knows the netmask from DHCP response
- Needs to route to the Default Gateway Router
- But its MAC address unknown

LL IP	UDP	DNS Request
-------	-----	-------------

ARP

- Broadcast an ARP request message
- ARP response from the Gateway Router contains the MAC address

Step 2: Getting Destination IP Address

- DNS request then processed by local server
 - Does the recursive querying to root, TLD and authoritative DNS server
- DNS response with <u>www.google.com</u>'s IP address

 Can save on complete iterative querying by local server if response if cached

Step 3: Requesting the Page

- Use HTTP to communicate with the destination's application
- TCP is the transport protocol used
- Encapsulated by IP and LL frames

How is a Packet Transmitted?

Same network layer functionalities irrespective of transport or application layer protocols

Inter-Domain

Intra-Domain

Link Layer Technology Varies

Transmitting Packet: All Layers View

