CS 170 Dis 0

Released on 2017-08-27

1 Asymptotic Bound Practice

Prove that for any $\epsilon > 0$ we have $\log x \in O(x^{\epsilon})$.

Solution:

Observe that $x > \log x \forall x > 0$. We can see this by taking finding the minimum of the function $x - \log x$ over the range $(0, \inf)$ using some calculs (find the critical points, then check concavity). The minimizing x is 1, with value 1.

If $x > \log x$, then we have that $\log x^{\epsilon} < x^{\epsilon}$, and therefore $\epsilon \log x < x^{\epsilon}$. It follows that a constant factor times x^{ϵ} is always larger than $\log x$ for x > 0. This proves $\log x \in O(x^{\epsilon})$.

Here is an alternate argument, using l'Hopital's rule:

$$\lim_{x \to \infty} \frac{\log x}{x^{\epsilon}} = \lim_{x \to \infty} \frac{\frac{d}{dx} \log x}{\frac{d}{dx} x^{\epsilon}}$$
$$= \lim_{x \to \infty} \frac{\frac{1}{x}}{\epsilon x^{\epsilon - 1}}$$
$$= \lim_{x \to \infty} \frac{1}{\epsilon x^{\epsilon}} = 0$$

And so therefore $\log x \in O(x^{\epsilon})$.

2 Bounding Sums

Let $f(\cdot)$ be a function. Consider the equality

$$\sum_{i=1}^{n} f(i) \in \Theta(f(n)),$$

Give a function f_1 such that the equality holds, and a function f_2 such that the equality does not hold.

Solution: There are many possible solutions. $f_1(i) = 2^i : \sum_{i=1}^n 2^i = 2^{n+1} - 2 \in \Theta(2^n).$ $f_2(i) = i : \sum_{i=1}^n i = \frac{n(n+1)}{2} \in \Theta(n^2) \neq \Theta(n).$

$$f_2(i) = i$$
: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \in \Theta(n^2) \neq \Theta(n)$.

In Between Functions 3

Prove or disprove: If $f: \mathbb{N} \to \mathbb{N}$ is any positive-valued function, then either (1) there exists a constant c>0 so that $f(n)\in O(n^c)$, or (2) there exists a constant $\alpha>1$ so that $f(n)\in \Omega(\alpha^n)$.

Solution: Let $f(n) = 2^{\sqrt{n}}$. $f(n) \in \Omega(n^c)$ for any constant c > 0 and the best case is asymptotically slower than n^c . $f(n) \in O(\alpha^n)$ for any constant $\alpha > 1$ and the worst case is asymptotically faster than α^n .

As a side note, this shows that there are algorithms whose running time grows faster than any polynomial but slower than any exponential. In other words, there exists a nether between polynomial-time and exponential-time.

4 Recurrence Relation Practice

Derive an asymptotic tight bound for the following T(n). Cite any theorem you use.

(a)
$$T(n) = 2 \cdot T(\frac{n}{2}) + \sqrt{n}$$
.

Solution: Master theorem: a = 2, b = 2, d = 1/2. So that $d < \log_b a = 1$: $T(n) = \Theta(n)$

(b)
$$T(n) = T(n-1) + c^n$$
 for constants $c > 0$.

Solution: Expanding out the recurrence, we have $T(n) = \sum_{i=0}^{n} c^{i}$.

By the formula for the sum of a partial geometric series, for $c \neq 1$: $T(n) := \sum_{i=0}^{n} c^i = \frac{1-c^{n+1}}{1-c}$. Thus,

- If c > 1, for sufficiently large n, $c^{n+1} > c^{n+1} 1 > c^n$. Dividing this inequality by c-1 yields: $\frac{c}{c-1}c^n > T(n) > \frac{1}{c-1}c^n$. Thus, $T(n) = \Theta(c^n)$, since $\frac{1}{c-1}$ is constant.
- If c = 1, then every term in the sum is 1. Thus, $T(n) = n + 1 = \Theta(n)$.
- If c < 1, then $\frac{1}{1-c} > \frac{1-c^{n+1}}{1-c} = T(n) > 1$. Thus, $T(n) = \Theta(1)$.
- (c) $T(n) = 2T(\sqrt{n}) + 3$, and T(2) = 3.

Solution: The recursion tree is a full binary tree of height h, where h satisfies $n^{1/2^h} = 2$. Solving this for h, we get that $h = \Theta(\log \log n)$. The work done at every node of this recursion tree is constant, so the total work done is simply the number of nodes of the tree, which is $2^{h+1} - 1 = \Theta(\log n)$, so $T(n) = \Theta(\log n)$.