CS 170, Fall 2018 Dis 0 A. Chiesa & S. Rao
CS 170 Dis 0

Released on 2017-08-27

1 Asymptotic Bound Practice

Prove that for any ¢ > 0 we have logz € O(z°).

Solution:

Observe that x > logaVx > 0. We can see this by taking finding the minimum of the
function z — logz over the range (0,inf) using some calculs (find the critical points, then
check concavity). The minimizing z is 1, with value 1.

If z > logz, then we have that log x¢ < x€, and therefore elogxz < z¢. It follows that a
constant factor times z¢ is always larger than logx for x > 0. This proves logz € O(x¢).

Here is an alternate argument, using ’'Hopital’s rule:

log % log =

lim — = lim =
T—r00 T—00 4 e
x d:vx
1

= lim —% il
r—00 €€
. 1
= lim — =0
r—00 €x€

And so therefore logz € O(z).

2 Bounding Sums

Let f(-) be a function. Consider the equality

Y f6) € e(f(n),
i=1

Give a function f; such that the equality holds, and a function fs such that the equality does
not hold.



CS 170, Fall 2018 Dis 0 A. Chiesa & S. Rao

Solution: There are many possible solutions.
fii) =24 30 2t =2rtl 2 € 9(27).
foli) =i S i = M € @(n2) # O(n).

3 In Between Functions

Prove or disprove: If f : N — N is any positive-valued function, then either (1) there exists a
constant ¢ > 0so that f(n) € O(n®), or (2) there exists a constant & > 1 so that f(n) € Q(a™).

Solution: Let f(n) = 2V™. f(n) € Q(n°) for any constant ¢ > 0 and the best case is
asymptotically slower than n¢. f(n) € O(a™) for any constant o > 1 and the worst case is
asymptotically faster than a”.

As a side note, this shows that there are algorithms whose running time grows faster
than any polynomial but slower than any exponential. In other words, there exists a nether
between polynomial-time and exponential-time.

4 Recurrence Relation Practice

Derive an asymptotic tight bound for the following T'(n). Cite any theorem you use.

(a) T(n) =2-T(3) + V7.

Solution: Master theorem: a = 2,b = 2,d = 1/2. So that d < log,a = 1: T'(n) = ©(n)

(b) T(n) =T(n— 1)+ ¢" for constants ¢ > 0.



CS 170, Fall 2018 Dis 0 A. Chiesa & S. Rao

Solution: Expanding out the recurrence, we have T'(n) = >, c".

By the formula for the sum of a partial geometric series, for ¢ # 1: T(n) := 3. ¢ =
=0
1— n+1
1= Thus,

e If ¢ > 1, for sufficiently large n, ¢"t! > ¢"*! — 1 > ¢". Dividing this inequality by

¢ — 1 yields: —¢" > T(n) > ¢ Thus, T'(n) = ©(c"), since L is constant.

e If ¢ =1, then every term in the sum is 1. Thus, T'(n) =n+ 1 = O(n).

o If ¢ < 1, then {& > 152 — T'(n) > 1. Thus, T(n) = O(1).

T(n) = 2T(v/n) + 3, and T(2) = 3.

Solution: The recursion tree is a full binary tree of height h, where h satisfies n'/ 2" =9,
Solving this for h, we get that h = ©(loglogn). The work done at every node of this
recursion tree is constant, so the total work done is simply the number of nodes of the
tree, which is 21 — 1 = ©(logn), so T'(n) = O(logn).



	Asymptotic Bound Practice
	Bounding Sums
	In Between Functions
	Recurrence Relation Practice

