CS 170 Dis 0

Released on 2017-08-27

1 Asymptotic Bound Practice

Prove that for any $\epsilon>0$ we have $\log x \in O\left(x^{\epsilon}\right)$.

Solution:

Observe that $x>\log x \forall x>0$. We can see this by taking finding the minimum of the function $x-\log x$ over the range ($0, \inf$) using some calculs (find the critical points, then check concavity). The minimizing x is 1 , with value 1 .

If $x>\log x$, then we have that $\log x^{\epsilon}<x^{\epsilon}$, and therefore $\epsilon \log x<x^{\epsilon}$. It follows that a constant factor times x^{ϵ} is always larger than $\log x$ for $x>0$. This proves $\log x \in O\left(x^{\epsilon}\right)$.

Here is an alternate argument, using l'Hopital's rule:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\log x}{x^{\epsilon}} & =\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} \log x}{\frac{d}{d x} x^{\epsilon}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\epsilon x^{\epsilon-1}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{\epsilon x^{\epsilon}}=0
\end{aligned}
$$

And so therefore $\log x \in O\left(x^{\epsilon}\right)$.

2 Bounding Sums

Let $f(\cdot)$ be a function. Consider the equality

$$
\sum_{i=1}^{n} f(i) \in \Theta(f(n)),
$$

Give a function f_{1} such that the equality holds, and a function f_{2} such that the equality does not hold.

Solution: There are many possible solutions.

$$
\begin{aligned}
& f_{1}(i)=2^{i}: \sum_{i=1}^{n} 2^{i}=2^{n+1}-2 \in \Theta\left(2^{n}\right) \\
& f_{2}(i)=i: \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \in \Theta\left(n^{2}\right) \neq \Theta(n)
\end{aligned}
$$

3 In Between Functions

Prove or disprove: If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any positive-valued function, then either (1) there exists a constant $c>0$ so that $f(n) \in O\left(n^{c}\right)$, or (2) there exists a constant $\alpha>1$ so that $f(n) \in \Omega\left(\alpha^{n}\right)$.

Solution: Let $f(n)=2^{\sqrt{n}} . f(n) \in \Omega\left(n^{c}\right)$ for any constant $c>0$ and the best case is asymptotically slower than $n^{c} . f(n) \in O\left(\alpha^{n}\right)$ for any constant $\alpha>1$ and the worst case is asymptotically faster than α^{n}.

As a side note, this shows that there are algorithms whose running time grows faster than any polynomial but slower than any exponential. In other words, there exists a nether between polynomial-time and exponential-time.

4 Recurrence Relation Practice

Derive an asymptotic tight bound for the following $T(n)$. Cite any theorem you use.
(a) $T(n)=2 \cdot T\left(\frac{n}{2}\right)+\sqrt{n}$.

Solution: Master theorem: $a=2, b=2, d=1 / 2$. So that $d<\log _{b} a=1: T(n)=\Theta(n)$
(b) $T(n)=T(n-1)+c^{n}$ for constants $c>0$.

Solution: Expanding out the recurrence, we have $T(n)=\sum_{i=0}^{n} c^{i}$.
By the formula for the sum of a partial geometric series, for $c \neq 1: T(n):=\sum_{i=0}^{n} c^{i}=$ $\frac{1-c^{n+1}}{1-c}$. Thus,

- If $c>1$, for sufficiently large $n, c^{n+1}>c^{n+1}-1>c^{n}$. Dividing this inequality by $c-1$ yields: $\frac{c}{c-1} c^{n}>T(n)>\frac{1}{c-1} c^{n}$. Thus, $T(n)=\Theta\left(c^{n}\right)$, since $\frac{1}{c-1}$ is constant.
- If $c=1$, then every term in the sum is 1 . Thus, $T(n)=n+1=\Theta(n)$.
- If $c<1$, then $\frac{1}{1-c}>\frac{1-c^{n+1}}{1-c}=T(n)>1$. Thus, $T(n)=\Theta(1)$.
(c) $T(n)=2 T(\sqrt{n})+3$, and $T(2)=3$.

Solution: The recursion tree is a full binary tree of height h, where h satisfies $n^{1 / 2^{h}}=2$. Solving this for h, we get that $h=\Theta(\log \log n)$. The work done at every node of this recursion tree is constant, so the total work done is simply the number of nodes of the tree, which is $2^{h+1}-1=\Theta(\log n)$, so $T(n)=\Theta(\log n)$.

