
CS 170, Fall 2018 Dis 0 A. Chiesa & S. Rao

CS 170 Dis 0

Released on 2017-08-27

1 Asymptotic Bound Practice

Prove that for any ε > 0 we have log x ∈ O(xε).

Solution:
Observe that x > log x∀x > 0. We can see this by taking finding the minimum of the

function x − log x over the range (0, inf) using some calculs (find the critical points, then
check concavity). The minimizing x is 1, with value 1.

If x > log x, then we have that log xε < xε, and therefore ε log x < xε. It follows that a
constant factor times xε is always larger than log x for x > 0. This proves log x ∈ O(xε).

Here is an alternate argument, using l’Hopital’s rule:

lim
x→∞

log x

xε
= lim

x→∞

d
dx log x
d
dxx

ε

= lim
x→∞

1
x

εxε−1

= lim
x→∞

1

εxε
= 0

And so therefore log x ∈ O(xε).

2 Bounding Sums

Let f(·) be a function. Consider the equality

n∑
i=1

f(i) ∈ Θ(f(n)),

Give a function f1 such that the equality holds, and a function f2 such that the equality does
not hold.

1



CS 170, Fall 2018 Dis 0 A. Chiesa & S. Rao

Solution: There are many possible solutions.
f1(i) = 2i:

∑n
i=1 2i = 2n+1 − 2 ∈ Θ(2n).

f2(i) = i:
∑n

i=1 i = n(n+1)
2 ∈ Θ(n2) 6= Θ(n).

3 In Between Functions

Prove or disprove: If f : N→ N is any positive-valued function, then either (1) there exists a
constant c > 0 so that f(n) ∈ O(nc), or (2) there exists a constant α > 1 so that f(n) ∈ Ω(αn).

Solution: Let f(n) = 2
√
n. f(n) ∈ Ω(nc) for any constant c > 0 and the best case is

asymptotically slower than nc. f(n) ∈ O(αn) for any constant α > 1 and the worst case is
asymptotically faster than αn.

As a side note, this shows that there are algorithms whose running time grows faster
than any polynomial but slower than any exponential. In other words, there exists a nether
between polynomial-time and exponential-time.

4 Recurrence Relation Practice

Derive an asymptotic tight bound for the following T (n). Cite any theorem you use.

(a) T (n) = 2 · T (n2 ) +
√
n.

Solution: Master theorem: a = 2, b = 2, d = 1/2. So that d < logb a = 1: T (n) = Θ(n)

(b) T (n) = T (n− 1) + cn for constants c > 0.

2



CS 170, Fall 2018 Dis 0 A. Chiesa & S. Rao

Solution: Expanding out the recurrence, we have T (n) =
∑n

i=0 c
i.

By the formula for the sum of a partial geometric series, for c 6= 1: T (n) :=
n∑
i=0

ci =

1−cn+1

1−c . Thus,

� If c > 1, for sufficiently large n, cn+1 > cn+1 − 1 > cn. Dividing this inequality by
c− 1 yields: c

c−1c
n > T (n) > 1

c−1c
n. Thus, T (n) = Θ(cn), since 1

c−1 is constant.

� If c = 1, then every term in the sum is 1. Thus, T (n) = n+ 1 = Θ(n).

� If c < 1, then 1
1−c >

1−cn+1

1−c = T (n) > 1. Thus, T (n) = Θ(1).

(c) T (n) = 2T (
√
n) + 3, and T (2) = 3.

Solution: The recursion tree is a full binary tree of height h, where h satisfies n1/2
h

= 2.
Solving this for h, we get that h = Θ(log log n). The work done at every node of this
recursion tree is constant, so the total work done is simply the number of nodes of the
tree, which is 2h+1 − 1 = Θ(log n), so T (n) = Θ(log n).

3


	Asymptotic Bound Practice
	Bounding Sums
	In Between Functions
	Recurrence Relation Practice

