CS 170, Fall 2018 DIS 01 A. Chiesa & S. Rao

CS 170 DIS 01

Released on 2018-09-03

1

Squaring vs multiplying: matrices

The square of a matrix A is its product with itself, AA.

(a)

Show that five multiplications are sufficient to compute the square of a 2 x 2 matrix.

(b) What is wrong with the following algorithm for computing the square of an n x n matrix?

()

”Use a divide-and-conquer approach as in Strassen’s algorithm, except that instead of
getting 7 subproblems of size n/2, we now get 5 subproblems of size n/2 thanks to
part (a). Using the same analysis as in Strassen’s algorithm, we can conclude that the
algorithm runs in ©(n'°82°) time.”

In fact, squaring matrices is no easier than multiplying them. Show that if n x n matrices
can be squared in ©(n) time, then any n X n matrices can be multiplied in ©(n°) time.

Solution:

a)

el e[]

Hence the 5 multiplications a?, d?, be, b(a+d) and c¢(a+d) suffice to compute the square.

b) We have:

A B1® [A2+ BC AB+BD 4 A2+ BC B(A+D)
C D| | CA+DC CB+ D? C(A+ D) BC+ D?

We end up getting 5 subproblems that are not of the same type as the original problem:
We started with a squaring problem for a matrix of size n x n and three of the 5
subproblems now involve multiplying n/2 x n/2 matrices. Hence the recurrence T'(n) =
5T(n/2) + O(n?) does not make sense.

(Also, note that matrices don’t commute! That is, in general BC # CB, so we cannot
reuse that computation)

¢) Given two n X n matrices X and Y, create the 2n x 2n matrix A:

=l

It now suffices to compute A2, as its upper left block will contain XY

, [XY o0
A‘{o Y X

CS 170, Fall 2018 DIS 01 A. Chiesa & S. Rao

Hence, the product XY can be calculated in time O(S(2n)). If S(n) = O(n®), this is
also O(n®).

Note: This is an example of a reduction, and is an important concept that we will see
over and over again in this course. We are saying that matrix squaring is no easier
than matrix multiplication — because we can trick any program for matrix squaring
to actually solve the more general problem of matrix multiplication.

2 Find the missing integer

An array A of length N contains all the integers from 0 to N except one (in some random
order). In this problem, we cannot access an entire integer in A with a single operation.
The elements of A are represented in binary, and the only operation we can use to access
them is “fetch the jth bit of A[i]”. Using only this operation to access A, give an algorithm
that determines the missing integer by looking at only O(N) bits. (Note that there are
O(Nlog N) bits total in A, so we can’t even look at all the bits). Assume the numbers are
in bit representation with leading Os.

Solution:

(i) Main idea Look at least significant bits and compare the Os and 1s. Discard the
numbers whose least significant bit is of the larger set. The bit of the missing number
at this position will be the bit of the smaller set. Recursively apply the algorithm and
build the missing number at each bit position.

(ii) Psuedocode

procedure FINDMISSING(A)
return FINDMISSINGNUM(A, 0)

procedure FINDMISSINGNUM(A, m)
if length[A] = 0 then
return m
B + values of A with LSB of 0 > LSB stands for least significant bit
C + values of A with LSB of 1
if length[B] < length[C] then
B <+ B with LSB of all numbers removed
m < m with 0 prepend to least significant bit
return FINDMISSINGNUM(B, m)
else
C' < C with LSB of all numbers removed
m < m with 1 prepend to least significant bit
return FINDMISSINGNUM(C, m)

(iii) Proof of correctness Removing a number, m, creates an imbalance of Os and 1s. If
N was odd, the number of Os in least significant bit position should equal the number
of 1s. If N was even, then number of Os should be 1 more than the number of 1s. Thus
if all numbers are present, COUNT(0s) > COUNT(1s). We have four cases:

CS 170, Fall 2018 DIS 01 A. Chiesa & S. Rao

3
(a)

(b)

o If LSB of m is 0, removing m removes a 0

— If N is even, COUNT(0s) = COUNT(1s)
— If N is odd, COUNT(0s) < COUNT(1s)

o If LSB of m is 1, removing m removes a 1

— If N is even, COUNT(0s) > COUNT(1s)
— If N is odd, cOUNT(0s) > COUNT(1s)

Notice that if cOUNT(0s) < COUNT(1s) m’s least significant bit is 0. We can discard
all numbers with LSB of 1 because removing m does not the count of 1s. If counT(0s)
> COUNT(1s), m’s least significant bit is 1. Likewise we can discard all numbers with
LSB of 0.

Assume that this condition applies for all bit positions up to k. If we look at the k+1-th
bit position, the condition above holds true. The elements at the k + 1-th bit position
have the same bit at the k-th position as m and thus are the only elements we are
interested in at the k + 1 position.

Running time analysis Since we care about the number of bits seen, creating the
auxiliary arrays looks at O(N) bits. In the worst case, the problem is reduced in half,
so we have the recurrence T'(N) = T'(N/2) + O(N), which, by master’s theorem, gives
us T(N) = O(N).

As for runtime, creating the auxiliary arrays and counting the number of 0 bits and 1
bits takes O(N log N) time because each number has at most log N bits. In the worst
case, the problem is reduced in half, so we have the recurrence T(N) = T(N/2) +
O(Nlog N) = O(Nlog N).

Complex numbers review

Write each of the following numbers in the form p(cos @ + isin6) (for real p and 6):

(i) +/3+i

(ii) The three third roots of unity
(iii) The sum of your answers to the previous items
Let sqrt(z) represent one of the complex square roots of x, so that (sqrt(z))? = x. What
are the possible values of sqrt(sqrt(—1))?

You can use any notation for complex numbers, e.g., rectangular, polar, or complex
exponential notation.

Solution:

(a)

(i) —/3+i=2(cos 2T + isin 2T)
(i) (cosO+isin0), (cos & + isin ZF), (cos 4T + isin &)
(iii) 0

CS 170, Fall 2018 DIS 01 A. Chiesa & S. Rao

(b) v—1==i;
Vi=+L2(1+1), Vi=+L2(1—1).

Alternatively, —1 = cosm + isinm = cos 37 + i sin 3.
So, Vcos + isinm = {(cos & +isin3), (cos 3T + isin 3T)}.

Therefore:
V(cos T +ising) = \/(cos +isin 2F) = {(cos § 4+ isin T), (cos 2 + isin 27)}, and

\/(cos——i—zsm 37y = \/(cos—+zsm) = {(cos 2F +isin 2T, (cos TF + isin TF)}.

	 Squaring vs multiplying: matrices
	Find the missing integer
	 Complex numbers review

