
CS 170, Fall 2018 Dis 02 A. Chiesa & S. Rao

CS 170 Dis 02

Released on 2018-09-10

1 Cubed Fourier

(a) Cubing the 9th roots of unity gives the 3rd roots of unity. Next to each of the third roots
below, write down the corresponding 9th roots which cube to it. The first has been filled
for you. We will use ω9 to represent the primitive 9th root of unity, and ω3 to represent
the primitive 3rd root.

ω0
3 : ω0

9, ,

ω1
3 : , ,

ω2
3 : , ,

(b) You want to run FFT on a degree-8 polynomial, but you don’t like having to pad it with
0s to make the (degree+1) a power of 2. Instead, you realize that 9 is a power of 3, and
you decide to work directly with 9th roots of unity and use the fact proven in part (a).
Say that your polynomial looks like P (x) = a0 + a1x+ a2x

2 + . . .+ a8x
8. How do you

split P (x) to use the fact proven in part (a) to your advantage? Provide either
the polynomial, or explain how the vector can be divided to recurse on. Recall that for the
FFT algorithm shown in the book, we split a given polynomial Q(x) = Ae(x

2) +xAo(x
2),

and we define what Ae(x
2) and Ao(x

2) are. Correspondingly, in lecture you saw the ~a
split into ~aeven and ~aodd.

Solution:

(a) ω0
3 : ω0

9, ω
3
9, ω

6
9

ω1
3 : ω1

9, ω
4
9, ω

7
9

ω2
3 : ω2

9, ω
5
9, ω

8
9

(b) Let P (x) = P1(x
3) + xP2(x

3) + x2P3(x
3)

where P1(x
3) = a0 + a3x

3 + a6x
6.

and P2(x
3) = a1 + a4x

3 + a7x
6.

and P3(x
3) = a2 + a5x

3 + a8x
6.

2 Vandermonde Matrices

Recall that a square Vandermonde matrix is of the following form:
1 α1 α2

1 . . . αn−11

1 α2 α2
2 . . . αn−12

. . .
1 αn α2

n . . . αn−1n


1

CS 170, Fall 2018 Dis 02 A. Chiesa & S. Rao

Some real matrices have the nice property that M−1 = cMT for some constant c, or even
that M−1 = M . Show that if M is a real n-by-n Vandermonde matrix and n > 2, then
M−1 is not equal to cMT for some constant c. (Hint: It suffices to show that MMT is not a
diagonal matrix, i.e. at least one of its off-diagonal entries is non-zero).

(Why are we asking you to show this? As seen in the textbook, both evaluating a polynomial
at n points and going from the value of a polynomial at n points to its coefficients were
equivalent to solving for either x or b in the equality Mx = b, where M is a Vandermonde
matrix, x is a vector of the polynomial’s coefficients, and b is the value of the polynomial
at the distinct points α1, α2 . . . αn, using the same αi that define the Vandermonde matrix.
In particular, for FFT the matrix M used has the nice property that its conjugate M∗ is
proportional to its inverse M−1. This exercise shows that if we want to use a matrix of
only real values in FFT, we won’t be able to achieve this nice property, which is what allows
inverse-FFT to look so similar to FFT.)

Solution:
As the hint suggests, if M−1 were equal to cMT , then MMT = 1

cMM−1 = 1
c I, which is

a diagonal matrix. So showing MMT is not a diagonal matrix suffices.
Now, for a Vandermonde matrix M , if any αi = αj then (MMT)ij is equal to 1 + α2

i +
α4
i + . . . which is non-zero since αi is real. So we only worry about the case where the αi

are distinct. Then, we claim that since there are at least three distinct αi, there exists some
i, j such that αiαj 6= −1. This is because if αiαj = −1 and αiαk = −1, then αjαk cannot
be equal to −1 since this implies (αiαj)(αiαk)(αjαk) = (αiαjαk)

2 = −1, i.e. the square
of a real number is negative, a contradiction. Now for this i, j pair, (MMT)ij is equal to
1 + (αiαj) + (αiαj)

2 + . . . + (αiαj)
n−1. If αiαj = 1, then this is equal to n, i.e. not zero.

Otherwise, this equals
1−(αiαj)

n

1−αiαj
. Since αiαj 6= 1 and αiαj is real and n > 2, this term is

non-zero because αiαj = −1.

3 Graph Traversal

(a) For the directed graph above, perform DFS starting from vertex A, breaking ties alpha-
betically. As you go, label each node with its pre- and post-number, and mark each edge
as Tree, Back, Forward or Cross.

(b) What are the strongly connected components of the above graph?

(c) Draw the DAG of the strongly connected components of the graph.

Solution:

2

CS 170, Fall 2018 Dis 02 A. Chiesa & S. Rao

A

B C

D

E

FG H

I

J

A6
1

B3
2 C20

7

D11
10

E5
4

F 18
9G15

14 H17
12

I1613

J19
8

T
T

C

C

C

B

T

T

C

T T

T

B

T

(a)

(b)
{A}, {B}, {E}, {G,H, I}, {C, J, F,D}

(c)

3

CS 170, Fall 2018 Dis 02 A. Chiesa & S. Rao

CJFD GHI A E B

4 Short Answer

For each of the following, either prove the statement is true or give a counterexample to show
it is false.

(a) If (u, v) is an edge in an undirected graph and during DFS, post(v) < post(u), then u is
an ancestor of v in the DFS tree.

(b) In a directed graph, if there is a path from u to v and pre(u) < pre(v) then u is an
ancestor of v in the DFS tree.

(c) In any connected undirected graph G there is a vertex whose removal leaves G connected.

Solution:

(a) True. There are two possible cases: pre(u) < pre(v) < post(v) < post(u) or pre(v) <
post(v) < pre(u) < post(u). In the first case, u is an ancestor of v. In the second case, v
was popped off the stack without looking at u. However, since there is an edge between
them and we look at all neighbors of v, this cannot happen.

(b) False. Consider the following case:

u32 w6
1 v54

T

T

B

(c) True. Remove a leaf of a DFS tree of the graph.

5 True Source

Design an efficient algorithm that given a directed graph G determines whether there is a
vertex v from which every other vertex can be reached. (Hint: first solve this for directed
acyclic graphs. Note that running DFS from every single vertex is not efficient.)

Solution:
We provide two solutions below that both run in linear time (there may be many more).

4

CS 170, Fall 2018 Dis 02 A. Chiesa & S. Rao

Solution 1: In directed acyclic graphs, this is easy to check. We just need to see if the
number of source nodes (zero indegree) is 1 or more than 1. Certainly if it is more than 1,
there is no true source, because one cannot reach either source from the other. But if there
is only 1, that source can reach every other vertex, because if v is any other vertex, if we
keep taking one of the incoming edges, starting at v, we have to either reach the source, or
see a repeat vertex. But the fact that the graph is acyclic means that we can’t see a repeat
vertex, so we have to reach the source. This means that the source can reach any vertex in
the graph.

Now for general graphs, we first form the SCCs, and the metagraph. Now if there is only
one source SCC, any vertex from it can reach any other vertex in the graph, but if there are
more than one source SCCs, there is no single vertex that can reach all vertices.

Finding the SCCs/metagraph can be done in O(|V | + |E|) time via DFS as seen in
the textbook, and counting the number of sources in the metagraph can also be done in
O(|V |+ |E|) time by just computing the in-degrees of all vertices using a single scan over the
edges.

Solution 2: There is an alternative solution which avoids computing the metagraph
altogether. The solution is to run DFS once on G to form a DFS forest. Now, let v be the
root of the last tree that this run of DFS visited. Run DFS starting from v to determine if
every vertex can be reached from v. If so, output v, if not, output that no true source exists.

It suffices to show no other vertex besides v can be a true source. In this case, if we
determine v is not a true source, then saying there is no true source is correct. (Of course, if
we find v is a true source, outputting it is also correct)

If there is a true source u, v can’t reach u because v is not a true source, so the DFS must
explore u before v. So nothing visited after v can be a true source, since v is the last root
and thus all vertices visited after v are reachable from v. But every vertex visited before v
must not be able to reach v, because otherwise the DFS would have taken a path from one
of those vertices to v and thus v would not be a root in the DFS forest. So nothing visited
before v can be a true source, since nothing visited before v can reach v. Thus v is the only
candidate for a true source.

Since the algorithm just involves running DFS twice, it runs in linear time.

6 Path Problems on DAGs

Let G be a directed, acyclic graph.

(a) Give an efficient algorithm to compute the number of edges in the longest path in G.

(b) Give an efficient algorithm that takes G and two vertices s, t in its input and computes
the number of paths from s to t.

Solution: For both parts of the problem, the key is to use the fact that G is a DAG
to linearize G, and then solve a subproblem for vertices in G in the order given by the
linearization. In solving the subproblems for later vertices, we can reuse the solution to the
subproblem for earlier vertices.

(a) For this part, we solve the subproblem ”what is the longest path in G that ends with i”
for all vertices i in the order given by the linearization. If i is a source, then the only

5

CS 170, Fall 2018 Dis 02 A. Chiesa & S. Rao

path that ends in i is the empty path, of length 0. Otherwise, for any “parent” j of i
(i.e. any j such that (j, i) ∈ E) any path ending in j can be extended into a path ending
in i by appending the edge (j, i). In particular, the longest path that ends in i can be
formed by taking the longest path ending in some parent j of i, and appending (j, i) to
that path. This suggests the following algorithm:

LongestPath(G)

Let v1, . . . vn be the linearization of G
Let L be a length n array (We will store the length of the longest path to vi as L[i])
for i = 1, 2, . . . n do

if vi is a source vertex then
L[i] = 0

else
L[i] = 1 + maxj:(vj ,vi)∈E L[j]

return the largest element of L

The correctness of the algorithm is given by the fact the longest path that ends in i is
formed by taking the longest path ending in some parent j of i, and appending (j, i)
to that path, as we argued above. Once we have the length longest path to all i, we
just take the maximum to get the longest path in the entire graph. The algorithm can
be implemented in linear time because linearization can be done in linear-time, we do
n iterations in the for loop, and each edge participates in one iteration, so the for loop
takes O(n+m) time.

(b) For this part, we solve the subproblem “how many paths from s end in i” for all i. For
any source besides s, the answer is 0. For s, the answer is 1, the empty path. For any
other vertex i, any path from s to one of i’s parents j can be extended into a path from
s to i by adding the edge (j, i). In particular, all paths from s to i must go through some
parent of i, so to count the number of paths from s to i we can just add up the number
of paths from s to all of i’s parents. This suggests the following algorithm:

CountPaths(G, s, t)

Let v1, . . . vn be the linearization of G
Let L be a length n array (We will store the number of paths from s to vi as L[i])
for i = 1, 2, . . . n do

if vi = s then
L[i] = 1

else
L[i] =

∑
j:(vj ,vi)∈E L[j] (if vi is a source, this will set L[i] = 0)

return L[t]

The correctness of the algorithm is given by the fact that the number of paths from s to i
is just the number of paths from s to all of i’s parents, as we argued above. The algorithm
can be implemented in linear time because linearization can be done in linear-time, we
do n iterations in the for loop, and each edge participates in one iteration, so the for loop
takes O(n+m) time.

6

	Cubed Fourier
	Vandermonde Matrices
	Graph Traversal
	Short Answer
	True Source
	Path Problems on DAGs

