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1 Cubed Fourier

(a) Cubing the 9th roots of unity gives the 3rd roots of unity. Next to each of the third roots
below, write down the corresponding 9th roots which cube to it. The first has been filled
for you. We will use ω9 to represent the primitive 9th root of unity, and ω3 to represent
the primitive 3rd root.
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(b) You want to run FFT on a degree-8 polynomial, but you don’t like having to pad it with
0s to make the (degree+1) a power of 2. Instead, you realize that 9 is a power of 3, and
you decide to work directly with 9th roots of unity and use the fact proven in part (a).
Say that your polynomial looks like P (x) = a0 + a1x+ a2x

2 + . . .+ a8x
8. How do you

split P (x) to use the fact proven in part (a) to your advantage? Provide either
the polynomial, or explain how the vector can be divided to recurse on. Recall that for the
FFT algorithm shown in the book, we split a given polynomial Q(x) = Ae(x

2) +xAo(x
2),

and we define what Ae(x
2) and Ao(x

2) are. Correspondingly, in lecture you saw the ~a
split into ~aeven and ~aodd.

2 Vandermonde Matrices

Recall that a square Vandermonde matrix is of the following form:
1 α1 α2

1 . . . αn−1
1

1 α2 α2
2 . . . αn−1

2

. . .
1 αn α2

n . . . αn−1
n


Some real matrices have the nice property that M−1 = cMT for some constant c, or even

that M−1 = M . Show that if M is a real n-by-n Vandermonde matrix and n > 2, then
M−1 is not equal to cMT for some constant c. (Hint: It suffices to show that MMT is not a
diagonal matrix, i.e. at least one of its off-diagonal entries is non-zero).

(Why are we asking you to show this? As seen in the textbook, both evaluating a polynomial
at n points and going from the value of a polynomial at n points to its coefficients were
equivalent to solving for either x or b in the equality Mx = b, where M is a Vandermonde
matrix, x is a vector of the polynomial’s coefficients, and b is the value of the polynomial
at the distinct points α1, α2 . . . αn, using the same αi that define the Vandermonde matrix.
In particular, for FFT the matrix M used has the nice property that its conjugate M∗ is
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proportional to its inverse M−1. This exercise shows that if we want to use a matrix of
only real values in FFT, we won’t be able to achieve this nice property, which is what allows
inverse-FFT to look so similar to FFT.)

3 Graph Traversal
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(a) For the directed graph above, perform DFS starting from vertex A, breaking ties alpha-
betically. As you go, label each node with its pre- and post-number, and mark each edge
as Tree, Back, Forward or Cross.

(b) What are the strongly connected components of the above graph?

(c) Draw the DAG of the strongly connected components of the graph.

4 Short Answer

For each of the following, either prove the statement is true or give a counterexample to show
it is false.

(a) If (u, v) is an edge in an undirected graph and during DFS, post(v) < post(u), then u is
an ancestor of v in the DFS tree.

(b) In a directed graph, if there is a path from u to v and pre(u) < pre(v) then u is an
ancestor of v in the DFS tree.

(c) In any connected undirected graph G there is a vertex whose removal leaves G connected.

2



CS 170, Fall 2018 Dis 02 A. Chiesa & S. Rao

5 True Source

Design an efficient algorithm that given a directed graph G determines whether there is a
vertex v from which every other vertex can be reached. (Hint: first solve this for directed
acyclic graphs. Note that running DFS from every single vertex is not efficient.)

6 Path Problems on DAGs

Let G be a directed, acyclic graph.

(a) Give an efficient algorithm to compute the number of edges in the longest path in G.

(b) Give an efficient algorithm that takes G and two vertices s, t in its input and computes
the number of paths from s to t.
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